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1 Viscosity Solutions

1.1 Alexandroff Maximum Principle

We provide the problem setting

(i) Ω ⊂ Rn bounded and connected.

(ii) Uniformly Elliptic. Given λ,Λ > 0, let aij(x) ∈ C (Ω) s.t. λ |ξ|2 ≤ aij(x) ξiξj ≤ Λ |ξ|2 ∀ x ∈ Ω, ξ ∈ Rn.

• Let operator L in Ω s.t. Lu ≡ aij(x)Diju for u ∈ C2 (Ω). We call u ∈ C2 (Ω) a supersolution of Lu = 0

in Ω if Lu ≤ 0. Notice ∀ φ ∈ C2 (Ω) s.t. Lφ > 0, we have L (u− φ) < 0 in Ω =⇒ u − φ has no local

interior minimum. Hence if ∃ x0 ∈ Ω s.t. u− φ attains local mimimum, we know Lφ(x0) ≤ 0.

• Geometrically, u− φ has a local minimum at x0 ∈ Ω =⇒ φ touches u from below at x0 up to constant.

Definition 1.1 (Viscosity Solution). f ∈ C (Ω). We call u ∈ C (Ω) a viscosity supersolution of Lu = f in Ω if

∀ x0 ∈ Ω and ∀ φ ∈ C2 (Ω) s.t. u− φ has a local minimum at x0 =⇒ Lφ(x0) ≤ f(x0)

u ∈ C (Ω) a viscosity subsolution of Lu = f in Ω if

∀ x0 ∈ Ω and ∀ φ ∈ C2 (Ω) s.t. u− φ has a local maximum at x0 =⇒ Lφ(x0) ≥ f(x0)

u ∈ C (Ω) a viscosity solution if both viscosity supersolution and subsolution.

Now we define weakly the class of solutions to elliptic pdes.

• ∀ φ ∈ C2 at x0, define e1, · · · , en eigenvalues of Hessian D2φ(x0). We see

Lφ(x0) ≤ 0 ⇐⇒
n∑

i,j=1

aij(x0)Dijφ(x0) ≤ 0 =⇒
n∑

k=1

αkek ≤ 0 for λ ≤ αk ≤ Λ

⇐⇒
∑
ei>0

αiei +
∑
ei<0

αiei ≤ 0 ⇐⇒
∑
ei>0

αiei ≤
∑
ei<0

αi (−ei) =⇒ λ
∑
ei>0

ei ≤ Λ
∑
ei<0

(−ei)

This is to say, at x0, positive eigenvalues of D2φ(x0) are controlled by its negative eigenvalues.

Definition 1.2 (Solution Class S (λ,Λ, f)). f ∈ C (Ω). We say u ∈ C (Ω) belongs to S+ (λ,Λ, f) if

∀ x0 ∈ Ω and ∀ φ ∈ C2 (Ω) s.t. u− φ has a local minimum at x0 =⇒ λ
∑
ei>0

ei + Λ
∑
ei<0

ei ≤ f(x0)

where e1, · · · , en are eigenvalues of D2φ(x0). Similarly, u ∈ C (Ω) belongs to S− (λ,Λ, f) if

∀ x0 ∈ Ω and ∀ φ ∈ C2 (Ω) s.t. u− φ has a local maximum at x0 =⇒ Λ
∑
ei>0

ei + λ
∑
ei<0

ei ≥ f(x0)
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S (λ,Λ, f) = S+ (λ,Λ, f) ∩ S− (λ,Λ, f).

Remark 1.1. (i) Viscosity supersolution to Lu = f in Ω under uniform ellipticity =⇒ u ∈ S+ (λ,Λ, f).

Viscosity subsolution to Lu = f in Ω under uniform ellipticity =⇒ u ∈ S− (λ,Λ, f).

(ii) S+ (λ,Λ, f) , S− (λ,Λ, f) also include solutions to fully non-linear pdes.

Example 1.1 (Pucci Equations). 0 < λ ≤ Λ.

• Let Aλ,Λ := {A is n× n symmetric matrix | λ |ξ|2 ≤ Aij ξiξj ≤ Λ |ξ|2 ∀ ξ ∈ Rn}

• For M n× n symmetric, we define Pucci extremal operator

M− (M) ≡ M− (λ,Λ,M) := inf
A∈Aλ,Λ

AijMij , M+ (M) ≡ M+ (λ,Λ,M) := sup
A∈Aλ,Λ

AijMij

If denote e1, · · · , en as eigenvalues of M , we see

M− (λ,Λ,M) = λ
∑
ei>0

ei + Λ
∑
ei<0

ei, M+ (λ,Λ,M) = Λ
∑
ei>0

ei + λ
∑
ei<0

ei

• Pucci’s Equations are given for f, g ∈ C (Ω)

M− (λ,Λ,M) = f, M+ (λ,Λ,M) = g

Hence u ∈ S+ (λ,Λ, f) ⇐⇒ M− (λ,Λ, D2u
)
≤ f in viscosity sense, i.e.

∀ x0 ∈ Ω and ∀ φ ∈ C2 (Ω) s.t. u− φ has a local minimum at x0 =⇒ M− (λ,Λ, D2φ(x0)
)
≤ f

u ∈ S− (λ,Λ, f) ⇐⇒ M+
(
λ,Λ, D2u

)
≥ g in viscosity sense, i.e.

∀ x0 ∈ Ω and ∀ φ ∈ C2 (Ω) s.t. u− φ has a local maximum at x0 =⇒ M− (λ,Λ, D2φ(x0)
)
≥ g

• For any two n× n symmetric matrices M, N

M− (M) +M− (N) ≤ M− (M +N) ≤ M+ (M) +M− (N) ≤ M+ (M +N) ≤ M+ (M) +M+ (N)

Now we derive Alexandroff Maximum Principle for viscosity solutions. Let v ∈ C (Ω) for open convex set Ω.

• Convex Envelope of v in Ω is Γ (v) (x) := sup
L

{L (x) | L ≤ v in Ω, L an affine function} ∀ x ∈ Ω. It is

indeed convex function, as Γ (v) (t x1 + (1− t)x2) ≤ tΓ (v) (x1)+(1− t) Γ (v) (x2) for t ∈ [0, 1], x1, x2 ∈ Ω.

• {x ∈ Ω | v (x) = Γ (v) (x)} is Lower Contact Set of v. Points in the contact set are contact points.

• We need classical Alexandroff Maximum Principle

Lemma 1.1. u ∈ C1,1 (B1), with u ≥ 0 on ∂B1. Then with Γu as convex envelope of −u− = min{u, 0},

sup
B1

u− ≤ c (n)

(ˆ
B1∩{u=Γu}

detD2u

) 1
n

Theorem 1.1 (Alexandroff Maximum Principle - Viscosity Version). u ∈ S+ (λ,Λ, f) in B1 with u ≥ 0 on ∂B1

for f ∈ C (Ω). Then with Γu as convex envelope of −u− = min{u, 0},

sup
B1

u− ≤ c (n, λ, Λ)

(ˆ
B1∩{u=Γu}

(
f+
)n) 1

n
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Proof. (i) We observe Γu (x) := sup
L

{L (x) | L ≤ min{u, 0} in B1, L an affine function}. Let x0 be contact

point, i.e., u(x0) = Γu (x0). WLOG take x0 = 0, and rechoose a frame where u ≥ 0 in B1 with u(0) = 0.

The latter makes sense by substracting a supporting plane at x0 = 0. We first show that at the contact

set x0 = 0, f(0) ≥ 0. Take h (x) = −ϵ |x|
2

2 in B1. Then u − h = u + ϵ |x|
2

2 has minimum at x0 = 0 since

u ≥ 0 in B1 and u(0) = 0. We use that u ∈ S+ (λ,Λ, f) =⇒ λ
∑

ei>0 ei + Λ
∑

ei<0 ei ≤ f(x0). Here we

need to compute eigenvalues for D2h(0), which are ei = −ϵ ∀ i, all negative. Hence −nΛϵ ≤ f(0). Take

ϵ → 0 gives 0 ≤ f(0).

(ii) We show that at x0 ∈ Ω contact point, for some affine function L, some constant C = C (n, λ,Λ) > 0 and

any x close to x0 s.t. ϵ(x) → 0 as x → x0,

L(x) ≤ Γu (x) ≤ L(x) + C {f(x0) + ϵ(x)} |x− x0|2 ∀ x ∈ B1

As before, we choose x0 = 0, and since the growth rate for L is controlled by quadratic term |x|2, it suffices

to prove

0 ≤ Γu (x) ≤ C {f(0) + ϵ(x)} |x|2 ∀ x ∈ B1

We need to estimate for small 0 < r ≪ 1, Cr := 1
r2 max

Br

Γu (x). We first fix r > 0. Since Γu is convex

function in Br ⊂ B1, we know Γu attains maximum in Br at some point (0, · · · , 0, r) on the boundary.

Notice the set {x ∈ B1 | Γu (x) ≤ Γu (0, · · · , 0, r)} contains Br and is convex. This is because

∀ x ∈ Br, Γu (x) ≤ max
Br

Γu (x) ≤ Γu (0, · · · , 0, r)

∀ x1, x2 ∈ {Γu (x) ≤ Γu (0, · · · , 0, r)}, and t ∈ [0, 1] , we have

Γu (tx1 + (1− t)x2) ≤ tΓu (x1)+(1− t) Γu (x2) ≤ Γu (0, · · · , 0, r) =⇒ tx1+(1− t)x2 ∈ {Γu (x) ≤ Γu (0, · · · , 0, r)}

Hence it follows that ∀ (x′, r) ∈ B1, we have Crr
2 = Γu (0, · · · , 0, r) ≤ Γu (x

′, r).

(iii) Take N > 0 to be determined. Let Rr = {(x′, xn) ∈ B1 | |x′| ≤ Nr, |xn| ≤ r}. We construct a quadratic

polynomial that touches u from below in Rr and curves up fast. Let b > 0 and h (x) = (xn + r)
2 − b |x′|2

• for xn = −r, h (x) = −b |x′|2 ≤ 0

• for |x′| = Nr, h (x) = (xn + r)
2 − bN2r2 ≤ 4r2 − bN2r2 =

(
4− bN2

)
r2 ≤ 0 if let b = 4

N2

• for xn = r, h (x) = 4r2 − b |x′|2 ≤ 4r2

Now let h̃ (x) := Cr

4 h (x) = Cr

4 (xn + r)
2 − Cr

N2 |x′|2. Recall we chose u ≥ 0 on B1 with u (0) = 0, and

Γu ≤ u due to convex envelope

on ∂Rr

{
h̃ (x′, r) ≤ Cr

4 (2r)
2
= Crr

2 = Γu (0, · · · , 0, r) ≤ Γu (x
′, r) ≤ u (x′, r) if xn = r

h̃ (x) ≤ 0 ≤ Γu (x) ≤ u (x) otherwise

h̃ (0) =
Crr

2

4
> 0 = Γu (0) = u (0) at 0

Hence lowering h̃ properly we see u− h̃ has local minimum somewhere inside Rr. We compute eigenvalues

of D2h̃, e1 = Cr

2 , e2, · · · , en = −2 Cr

N2 . Again we use that

u ∈ S+ (λ,Λ, f) =⇒ λ
Cr

2
− 2Λ (n− 1)

Cr

N2
≤ max

Rr

f

Choose N = N (n, λ,Λ) large so that Cr ≤ 4
λmax

Rr

f ⇐⇒ max
Br

Γu (x) ≤ 4r2

λ max
Rr

f . Note max
Rr

f → f (0) as

r → 0, which coincides with Γu (x) ≤ C {f(0) + ϵ(x)} |x|2 for r2 taking the place of |x|2.
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(iv) By above we have Γu (x) ∈ C1,1 in B1 and

detD2Γu (x) ≤ C (n, λ,Λ) (f (x))
n

a.e. x ∈ {u = Γu}

Apply Lemma 1.1 to Γu.

1.2 Harnack Inequality

We build up ingredients starting from Calderon-Zygmund. Recall we’re in Rn.

• Let Q1 be unit cube. Cut into 2n equally sized cubes, take as first generation.

• Do the same cutting for the smaller cubes. Repeat. Cubes from all generations are called dyadic cubes.

• Any (k + 1)-generation cube Q comes from k-generation Q̃, as predecessor of Q.

Lemma 1.2 (Calderon-Zygmund Decomposition). f ∈ L1 (Q1), f ≥ 0, and α > 1
|Q1|
´
Q1

f is fixed constant.

Then ∃ sequence of nonoverlapping dyadic cubes {Qj} ⊂ Q1 s.t.

f (x) ≤ α a.e. in Q1 \
⋃
j

Qj , α ≤ 1

|Qj |

ˆ
Qj

fdx ≤ 2nα ∀ j

Proof. (i) Cut Q1 into 2n dyadic cubes. We design algorithm to keep cube Q if α ≤ 1
|Q|
´
Q
f . For others

keep cutting, and continue the process. Let {Qj} be the sequence of cubes we’ve kept. Note such process

is infinite, i.e., for any generation, there must exist some cube that needs to be cut. This is because if ∃
some generation s.t. all cubes are kept, then it’s predecessor must be kept, by induction from the base case

α > 1
|Q1|
´
Q1

f , which contradicts it being cut.

(ii) Also, any predecessor Q of Qj that we’ve kept has to satisfy 1
|Q|
´
Q
fdx < α. But |Q| = 2n |Qj |, so for Qj

we’ve kept, α ≤ 1
|Qj |
´
Qj

f ≤ 2n 1
|Q|
´
Q
fdx ≤ 2nα.

(iii) Let F = Q1 \
⋃

j Qj , and ∀ x ∈ F , by our choice of {Qj}, there exists a subsequence of cubes Qi ∋ x s.t.

1

|Qi|

ˆ
Qi

f < α and diam
(
Qi
)
→ 0 as i → ∞

By Lebesgue density theorm, f ≤ α a.e. in F .

Corollary 1.1. Suppose measurable sets A ⊂ B ⊂ Q1 satisfy:

(i) |A| < δ for some δ ∈ (0, 1)

(ii) ∀ Q dyadic cube, |A ∩Q| ≥ δ |Q| =⇒ Q̃ ⊂ B for Q̃ predecessor of Q.

Then we have |A| ≤ δ |B|.

Proof. Apply Lemma 1.2 to f = χA choosing α = δ > 1
|Q|
´
Q
χA = |A|, we have a sequence of cubes {Qj} s.t.

χA (x) ≤ δ a.e. in Q1 \
⋃
j

Qj , δ ≤ 1

|Qj |
|A ∩Qj | ≤ 2nδ ∀ j

But notice δ ∈ (0, 1), so χA (x) ≤ δ a.e. in Q1 \
⋃

j Qj ⇐⇒ χA ≡ 0 a.e. in Q1 \
⋃

j Qj ⇐⇒ A ⊂
⋃

j Qj up to

set of measure zero. Also notice reason why next generation of cubes occur is 1

|Q̃j|
´
Q̃j

χA = 1

|Q̃j|

∣∣∣A ∩ Q̃j

∣∣∣ < δ.
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Now by assumption (ii), since δ |Qj | ≤ |A ∩Qj |, we have Q̃j ⊂ B ∀ j, so

A ⊂
⋃
j

Q̃j ⊂ B

upon relabelling Q̃j so they’re nonoverlapping, we get

|A| ≤
∑
i

∣∣∣A ∩ Q̃i
∣∣∣ ≤ δ

∑
i

∣∣∣Q̃i
∣∣∣ ≤ δ |B|

Now we prove lemmas that lead to Harnack Inequality. Let Qr denote cube with side length r ≥ 0. The following

is key ingredient: If solution is small somewhere in Q3, then it’s under control in a good portion of Q1.

Lemma 1.3. u ∈ S+ (λ,Λ, f) in B2
√
n for f ∈ C

(
B2

√
n

)
. Then ∃ ϵ0 > 0, µ ∈ (0, 1) and M > 1 depending only

on n, λ,Λ s.t. if

u ≥ 0 in B2
√
n, inf

Q3

u ≤ 1, ∥f∥Ln(B2
√

n)
≤ ϵ0

we have |{u ≤ M} ∩Q1| > µ.

Proof. (i) Note B1/4 ⊂ Q1 ⊂ Q3 ⊂ B2
√
n. Define g in B2

√
n by

g (x) := −M

(
1− |x|2

4n

)β

for large β > 0 to be determined and some M > 0

We note that g = 0 on ∂B2
√
n. We also choose M according to β so that g ≤ −2 in Q3.

Let w = u+ g in B2
√
n. We wish to show that by choosing β large, we have

w ∈ S+ (λ,Λ, f) in B2
√
n \Q1

The idea is to construct function g that is concave outside Q1 so the contact set of w = u+g, i.e., correction

of u by g, occurs in Q1. In fact, we localize where contact sets occur by choosing suitable functions.

(ii) Suppose φ is quadratic polynomial with property w−φ has a local minimum at x0 ∈ B2
√
n. Rewrite to see

w−φ = u− (φ− g) has local minumum at x0. By assumption u ∈ S+ (λ,Λ, f) ⇐⇒ M− (λ,Λ, D2u
)
≤ f

in viscosity sense for M− Pucci extremal operator, we have

M− (λ,Λ, D2φ (x0)
)
+M− (λ,Λ,−D2g (x0)

)
≤ M− (λ,Λ, D2φ (x0)−D2g (x0)

)
≤ f (x0)

In order to show that M− (λ,Λ, D2φ (x0)
)
≤ f (x0) ∀ x0 ∈ B2

√
n \ Q1, we omit a portion in B2

√
n by

choosing β large so that

M− (λ,Λ,−D2g (x0)
)
≥ 0 ∀ x0 ∈ B2

√
n \B1/4

To do so, we first need to calculate Hessian of g

Dijg (x) =
M

2n
β

(
1− |x|2

4n

)β−1

δij −
M

4n2
β (β − 1)

(
1− |x|2

4n

)β−2

xixj

Let x = (|x| , 0, · · · , 0), then eigenvalues of −D2g (x) are given by

e+ (x) =
M

2n
β

(
1− |x|2

4n

)β−2(
2β − 1

4n
|x|2 − 1

)
multiplicity 1 e− (x) = −M

2n
β

(
1− |x|2

4n

)β−1

multiplicity n−1
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We choose β large so for |x| ≥ 1
4 , e

+ (x) > 0 and e− (x) < 0. Hence for |x| ≥ 1
4 ,

M− (λ,Λ,−D2g (x0)
)
= λe+ (x) + (n− 1)Λe− (x)

=
M

2n
β

(
1− |x|2

4n

)β−2{
λ

(
2β − 1

4n
|x|2 − 1

)
− (n− 1)Λ

(
1− |x|2

4n

)}
≥ 0

if choose β large depending only on λ,Λ, n. Hence w ∈ S+ (λ,Λ, f) in B2
√
n \Q1, or equivalently,

w ∈ S+ (λ,Λ, f + η) in B2
√
n

for some η ∈ C∞
0 (Q1) and 0 ≤ η ≤ C (n, λ,Λ).

(iii) Apply Theorem1.1 to w in B2
√
n. Note by assumption, w = u + g ≥ 0 on ∂B2

√
n and since inf

Q3

u ≤ 1,

g ≤ −2 in Q3, we have inf
Q3

w = inf
Q3

(u+ g) ≤ −1 ⇐⇒ sup
Q3

w− ≥ 1. Hence by choice of η

1 ≤ sup
Q3

w− ≤ C

(ˆ
B2

√
n∩{w=Γw}

(|f |+ η)
n

) 1
n

≤ C ∥f∥Ln(B2
√

n)
+ C |{w = Γw}] ∩Q1|

1
n

Recall ∥f∥Ln(B2
√

n)
≤ ϵ0, so taking ϵ0 small enough we have

1

2
≤ C |{w = Γw}] ∩Q1|

1
n

Finally we notice w = Γw convex envelope of −w− = min{w, 0} =⇒ w ≤ 0 =⇒ u (x) ≤ −g (x) ≤ M .

1

2
≤ C |{u ≤ M}] ∩Q1|

1
n =⇒ choose µ ∈

(
0,

(
1

2C

)n)

Next we prove the complement lemma suggesting power decay of distribution functions under same assumptions.

Lemma 1.4. u ∈ S+ (λ,Λ, f) in B2
√
n for f ∈ C

(
B2

√
n

)
. Then ∃ ϵ0, ϵ > 0, and C > 0 constants depending

only on n, λ,Λ s.t. if

u ≥ 0 in B2
√
n, inf

Q3

u ≤ 1, ∥f∥Ln(B2
√

n)
≤ ϵ0

we have |{u ≥ t} ∩Q1| ≤ Ct−ϵ ∀ t > 0.

Proof. (i) We wish to show under above assumptions, for any k ∈ Z+ and M , µ from Lemma 1.3∣∣{u > Mk} ∩Q1

∣∣ ≤ (1− µ)
k

This makes sense if take Mk = t, then k = log t
logM , so (1− µ)

k
=
(
(1− µ)

1
log M

)log t

=⇒ ϵ = − log(1−µ)
logM > 0.

(ii) For k = 1, this is direct result from Lemma 1.3. Suppose k − 1 holds, i.e.,∣∣{u > Mk−1} ∩Q1

∣∣ ≤ (1− µ)
k−1

We set A := {u > Mk} ∩Q1 and B := {u > Mk−1} ∩Q1, we will show |A| ≤ (1− µ) |B| by Corollary 1.1.

• Indeed A ⊂ B ⊂ Q1

• Since M > 1, |A| < |{u > M} ∩Q1| ≤ 1− µ by Lemma 1.3.
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• We hope to show if Q = Qr (x0) is a cube centered at x0 with side length r in Q1 s.t.

|A ∩Q| ≥ (1− µ) |Q|

then Q̃ ∩ Q1 ⊂ B for Q̃ = Q3r (x0). Suppose not, then ∃ x̃ ∈ Q̃ = Q3r (x0) s.t. u (x̃) ≤ Mk−1.

Consider transformation

x = x0 + ry for y ∈ Q1 =⇒ x ∈ Q = Qr (x0)

and the function ũ defined on B2
√
n ⊃ Q1

ũ (y) :=
1

Mk−1
u (x) =

1

Mk−1
u (x0 + ry)

We know u ≥ 0 in B2
√
n =⇒ ũ ≥ 0 in B2

√
n, and inf

y∈Q3

ũ (y) ≤ 1 due to existence of x̃ ∈ Q̃ = Q3r (x0).

Also, defining

f̃ (y) :=
r2

Mk−1
f (x) ∀ y ∈ B2

√
n

We see, since 0 < r < 1 and M > 1∥∥∥f̃∥∥∥
Ln(B2

√
n)

≤ r

Mk−1
∥f∥Ln(B2

√
n)

≤ ∥f∥Ln(B2
√

n)
≤ ϵ0

And obviously ũ ∈ S+
(
λ,Λ, f̃

)
, by Lemma 1.3, we have for µ ∈ (0, 1)

µ < |{ũ (y) ≤ M} ∩Q1| = r−n
∣∣{u (x) ≤ Mk} ∩Q

∣∣ =⇒ µ |Q| < |Ac ∩Q| =⇒ |Q| < |Q|

We’ve reached a contradiction.

We obtain C0 estimate for u on Q1/4 using the above 2 lemmas.

Lemma 1.5. u ∈ S (λ,Λ, f) in Q4
√
n for f ∈ C

(
Q4

√
n

)
. Then ∃ ϵ0, C > 0 constants depending only on n, λ,Λ

s.t. if

u ≥ 0 in Q4
√
n, inf

Q1/4

u ≤ 1, ∥f∥Ln(Q4
√

n)
≤ ϵ0

we have sup
Q1/4

u ≤ C.

Proof. (i) We prove that there exists constants θ > 1 and M0 ≫ 1 depending only on n, λ, Λ s.t. if u (x0) =

P > M0 for some x0 ∈ B1/4, then ∃ {xk} ⊂ B1/2 s.t.

u (xk) ≥ θkP for k ∈ N

which contradicts boundedness of u on B1/4 =⇒ sup
B1/4

u ≤ M0.

(ii) Suppose ∃ x0 ∈ B1/4 s.t. u (x0) = P > M0 with M0, θ to be determined. Also take Qr (x0) with side

length r to be determined. The idea is to find x1 ∈ Q4
√
nr (x0) so that u (x1) ≥ θP . We start by choosing

r so that {u > P
2 } covers less than half of Qr (x0), using the power decay for distribution function of u.

Note inf
Q3

u ≤ inf
Q1/4

u ≤ 1. Hence by Lemma 1.4, we know ∃ ϵ > 0 s.t. taking t = P
2

∣∣∣∣{u >
P

2
} ∩Q1

∣∣∣∣ ≤ C

(
P

2

)−ϵ
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Choose r s.t. r ≤ 1
4 and rn

2 ≥ C
(
P
2

)−ϵ
. The former gives Qr (x0) ⊂ Q1 while the latter gives

1

|Qr (x0)|

∣∣∣∣{u >
P

2
} ∩Qr (x0)

∣∣∣∣ ≤ 1

2

(iii) Next we show for θ > 1 with θ − 1 small, ∃ x1 ∈ Q4
√
nr (x0) s.t. u (x1) ≥ θP . Show by contradiction.

Suppose u < θP in Q4
√
nr (x0). Consider transformation

x = x0 + ry for y ∈ Q4
√
n =⇒ x ∈ Q4

√
n (x0)

and the function ũ defined on Q4
√
n ⊃ B2

√
n

ũ (y) =
θP − u (x)

(θ − 1)P
=

θP − u (x0 + ry)

(θ − 1)P

We observe u < θP in Q4
√
nr (x0) =⇒ ũ ≥ 0 in B2

√
n, and ũ (0) = 1, Q3 ⊂ B2

√
n =⇒ inf

y∈Q3

ũ (y) ≤ 1.

Also, defining

f̃ (y) := − r2

(θ − 1)P
f (x) for y ∈ B2

√
n

We see, upon choosing P s.t. r ≤ (θ − 1)P∥∥∥f̃∥∥∥
Ln(B2

√
n)

≤ r

(θ − 1)P
∥f∥Ln(B2

√
n)

≤ ϵ0

Notice since u ∈ S (λ,Λ, f) = S+ (λ,Λ, f) ∩ S− (λ,Λ, f), we make use of u ∈ S− (λ,Λ, f) to see that

∀ x0 ∈ Q4
√
n and ∀ φ ∈ C2

(
Q4

√
n

)
s.t. u−φ has local maximum at x0 =⇒ Λ

∑
ei>0

ei +λ
∑
ei<0

ei ≥ f (x0)

⇐⇒ −Λ
∑
ei>0

(−ei)− λ
∑
ei<0

(−ei) ≥ f (x0) ⇐⇒ λ
∑
ei<0

(−ei) + Λ
∑
ei>0

(−ei) ≤ −f (x0)

rewriting “u − φ has local maximum at x0” as “− (u− φ) = −u − (−φ) has local minimum at x0”,

and observe now −ei are positive eigenvalues for D2 (−φ) at x0 and ei negative eigenvalues. We see

−u ∈ S+ (λ,Λ,−f). Hence obviously ũ ∈ S+
(
λ,Λ, f̃

)
in B2

√
n, we may apply Lemma 1.4 to ũ. Note

u (x) ≤ P
2 ⇐⇒ ũ (y) ≥ θ− 1

2

θ−1 , and is large for θ close to 1. Hence we’ve reached a contradiction

1

|Qr (x0)|

∣∣∣∣{u ≤ P

2
} ∩Qr (x0)

∣∣∣∣ = ∣∣∣∣{ũ ≥
θ − 1

2

θ − 1
} ∩Q1

∣∣∣∣ ≤ C

(
θ − 1

2

θ − 1

)−ϵ

<
1

2
for θ close to 1 =⇒ 1 < 1

(iv) Notice we’ve proved ∃ θ = θ (n, λ,Λ) > 1 s.t. if u (x0) = P for some x0 ∈ B1/4, then

∃ x1 ∈ Q4
√
nr (x0) ⊂ B2nr (x0) s.t. u (x1) ≥ θP

provided 0 < r ≤ 1
4 and

C (n, λ,Λ)P− ϵ
n ≤ r ≤ (θ − 1)P

Hence we need to choose P so that P ≥
(

C
θ−1

) n
n+ϵ

. We take r = CP− ϵ
n .

(v) Now we iterate above result. For kth iteration, we treat P above as θk−1P , so

rk = C
(
θk−1P

)− ϵ
n = Cθ−(k−1) ϵ

nP− ϵ
n
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and we’ve obtained a sequence {xk} s.t. ∀ k ∈ Z+

u (xk) ≥ θ
(
θk−1P

)
= θkP for some xk ∈ B2nrk (xk−1)

In order to ensure {xk} ⊂ B1/2, we let
∑

k∈Z+
2nrk < 1

4 . So choose M0 s.t. ∀ P > M0 the sum holds, i.e.

∑
k∈Z+

8nrk < 1 =⇒ 8nC

∞∑
k=1

θ−(k−1) ϵ
n ≤ M

ϵ
n
0 < P

ϵ
n =⇒ choose M0 ≥

(
C

θ − 1

) n
n+ϵ

Now Harnack’s Inequality is a direct consequence for above lemma.

Theorem 1.2 (Harnark’s Inequality - Viscosity Version). u ∈ S (λ,Λ, f) in B1 for f ∈ C (B1) with u ≥ 0 in

B1. Then for C = C (n, λ, Λ) > 0

sup
x∈B1/2

u ≤ C

{
inf

x∈B1/2

u+ ∥f∥Ln(B1)

}
Proof. Take u ∈ S (λ,Λ, f) in Q4

√
n s.t. u ≥ 0 in Q4

√
n. To apply Lemma 1.5 we need 2 more assumptions on

the solution. Hence consider

uδ :=
u

inf
x∈Q1/4

u+ δ + 1
ϵ0

∥f∥Ln(Q4
√

n)
for δ > 0 ∀ x ∈ Q4

√
n

which indeed gives inf
x∈Q1/4

uδ ≤ 1 and ∥fδ∥Lu(Q4
√

n)
≤ ϵ0 where

fδ (x) :=
f (x)

inf
x∈Q1/4

u+ δ + 1
ϵ0

∥f∥Ln(Q4
√

n)
for δ > 0 ∀ x ∈ Q4

√
n

Hence we apply Lemma 1.5 to uδ and see, letting δ → 0

sup
x∈Q1/4

u ≤ C

{
inf

x∈Q1/4

u+ ∥f∥Ln(Q4
√

n)

}
We conclude by choosing a finite cover for B1/2 with cubes Q1/4.

Corollary 1.2 (Interior Hölder Continuity - Viscosity Version). u ∈ S (λ,Λ, f) in B1 for f ∈ C (B1). Then

u ∈ Cα (B1) for α = α (n, λ,Λ) ∈ (0, 1). Moreover for C = C (n, λ,Λ) > 0

|u (x)− u (y)| ≤ C |x− y|α
{
sup
x∈B1

|u|+ ∥f∥Ln(B1)

}
for any x, y ∈ B1/2

1.3 Schauder Estimates

We provide the problem setting for Schauder’s Estimate for viscosity solutions.

(i) Uniformly Elliptic. Given λ,Λ > 0, let aij(x) ∈ C (B1) s.t. λ |ξ|2 ≤ aij(x) ξiξj ≤ Λ |ξ|2 ∀ x ∈ B1, ξ ∈ Rn.

(ii) f ∈ C (B1).

(iii) Recall Definition 1.1, u ∈ C (B1) is viscosity solution of aijDiju = f in B1 if

∀ x0 ∈ B1 and ∀ φ ∈ C2 (B1) s.t.

{
if u− φ has a local minimum at x0 =⇒ aij (x0)Dijφ (x0) ≤ f (x0)

if u− φ has a local maximum at x0 =⇒ aij (x0)Dijφ (x0) ≥ f (x0)

9



Lemma 1.6 (Approximation). Let u ∈ C (B1) be viscosity solution of aijDiju = f in B1 with |u| ≤ 1 in B1.

Assume for some 0 < ϵ < 1
16 ,

∥aij − aij (0)∥Ln(B3/4) ≤ ϵ

Then ∃ h ∈ C
(
B3/4

)
with aij (0)Dijh = 0 in B3/4 and |h| ≤ 1 in B3/4 s.t.

∥u− h∥L∞(B1/2) ≤ C
{
ϵγ + ∥f∥Ln(B1)

}
for C = C (n, λ,Λ) > 0 and γ = γ (n, λ,Λ) ∈ (0, 1).

Proof. (i) By Poisson’s Integral Formula, we solve for h ∈ C
(
B3/4

)
∩ C∞ (B3/4

)
explicitly s.t.

aij (0)Dijh = 0 in B3/4

h = u on ∂B3/4

where u ∈ C
(
∂B3/4

)
⊂ C (B1). Here the maximum principle for harmonic functions implies that |h| ≤

sup
x∈∂B3/4

u (x) ≤ 1. Note that u ∈ S (λ,Λ, f) in B1, so by Interior Hölder’s Continuity 1.2 for viscosity

solutions =⇒ we have u ∈ Cα
(
B3/4

)
with α = α (n, λ,Λ) ∈ (0, 1) and estimate

∥u∥Cα(B3/4) ≤ C
(
1 + ∥f∥Ln(B1)

)
Then by Global Hölder Continuity for h ∈ C

(
B3/4

)
harmonic function in B3/4 with h = u on ∂B3/4, and

that u ∈ Cα
(
∂B3/4

)
=⇒ we have h ∈ Cα/2

(
B3/4

)
with estimate

∥h∥Cα/2(B3/4) ≤ C ∥u∥Cα(∂B3/4) ≤ C ∥u∥Cα(B3/4) ≤ C
(
1 + ∥f∥Ln(B1)

)
(ii) We need 2 ingredients before estimating u− h.

First, since u− h = 0 on ∂B3/4, i.e., ∥u− h∥L∞(∂B3/4) = 0, consider ∀ 0 < δ < 1
4

∥u− h∥L∞(∂B3/4−δ) − ∥u− h∥L∞(∂B3/4)

δα/2
≤ ∥u− h∥Cα/2(B3/4) ≤ ∥u∥Cα/2(B3/4)+∥h∥Cα/2(B3/4) ≤ C

(
1 + ∥f∥Ln(B1)

)
=⇒ ∥u− h∥L∞(∂B3/4−δ) ≤ Cδα/2

(
1 + ∥f∥Ln(B1)

)
(1.1)

Second, consider ∀ 0 < δ < 1
4 , ∀ x0 ∈ B3/4−δ, we take some x1 ∈ ∂Bδ (x0) and apply Interior C2-estimate

to h− h (x1) in Bδ (x0) ⊂ B3/4, using h ∈ Cα/2
(
B3/4

)
∣∣D2h (x0)

∣∣ ≤ C
1

δ2
sup

x∈Bδ(x0)

|h (x)− h (x1)| ≤ C
1

δ2
δα/2 ∥h∥Cα/2(B3/4) ≤ Cδα/2−2

(
1 + ∥f∥Ln(B1)

)

=⇒
∥∥D2h

∥∥
L∞(B3/4−δ)

≤ Cδα/2−2
(
1 + ∥f∥Ln(B1)

)
(1.2)

(iii) Note u− h is viscosity solution to

aijDij (u− h) = f − (aij − aij (0))Dijh ≡ F in B3/4
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By ABP Method Theorem 1.1, the above estimates (1.1), (1.2) and assumption on aij

∥u− h∥L∞(B3/4−δ) ≤ ∥u− h∥L∞(∂B3/4−δ) + C ∥F∥Ln(B3/4−δ)

≤ ∥u− h∥L∞(∂B3/4−δ) + C
∥∥D2h

∥∥
L∞(B3/4−δ)

∥aij − aij (0)∥Ln(B3/4) + C ∥f∥Ln(B1)

≤ C
(
δα/2 + δα/2−2ϵ

){
1 + ∥f∥Ln(B1)

}
+ C ∥f∥Ln(B1)

Hence take δ = ϵ1/2 < 1
4 , so δα/2 + δα/2−2ϵ = 2ϵα/4. Take γ = α

4 .

Now we’re ready to state the Schauder estimate with definition for the weighted Hölder semi-norm below.

Definition 1.3 (Hölder Continuity in the Ln Sense). g is Hölder Continuous at 0 with exponent α in the Ln

sense if

[g]Cα
Ln

(0) := sup
0<r<1

1

rα

(
1

|Br|

ˆ
Br

|g − g (0)|n
) 1

n

< ∞

Theorem 1.3 (Schauder Estimate - Viscosity Version). u ∈ C (B1) be viscosity solution of aijDiju = f in B1.

Assume both {aij} and f are Hölder Continuous at 0 with exponent α in the Ln sense for some α ∈ (0, 1). Then

u is C2,α at 0. Moreover, ∃ polynomial P of degree 2 s.t.

|P (0)|+ |DP (0)|+
∣∣D2P (0)

∣∣ ≤ C
(
∥u∥L∞(B1)

+ |f (0)|+ [f ]Cα
Ln

(0)
)

with estimate

∥u− P∥L∞(Br(0))
≤ Cr2+α

(
∥u∥L∞(B1)

+ |f (0)|+ [f ]Cα
Ln

(0)
)

∀ 0 < r < 1

where C = C
(
n, λ,Λ, α, [aij ]Cα

Ln
(0)
)
> 0.

Proof. (i) We first restate our target problem. Assume f (0) = 0, since if we consider v = u− bijxixj
f(0)
2 for

constant matrix {bij} s.t. aij (0) bij = 1,

aijDijv = f − aijf (0) bij =⇒ aij (0)Dijv (0) = f (0)− f (0) = 0

Also assume [aij ]Cα
Ln

(0) is small by rescaling, and by considering for δ > 0 the problem

u

∥u∥L∞(B1)
+ 1

δ [f ]Cα
Ln

(0)

we may assume ∥u∥L∞(B1)
≤ 1 and [f ]Cα

Ln
(0) ≤ δ.

Hence it suffices to prove that ∃ δ > 0 depending on n, λ,Λ, α s.t. if u ∈ C (B1) is viscosity solution of

aijDiju = f in B1 with

∥u∥L∞(B1)
≤ 1, [aij ]Cα

Ln
(0) ≤ δ,

(
1

|Br|

ˆ
Br

|f |n
) 1

n

≤ δrα ∀ 0 < r < 1

Then ∃ polynomial P of degree 2 s.t.

|P (0)|+ |DP (0)|+
∣∣D2P (0)

∣∣ ≤ C

with estimate

∥u− P∥L∞(Br(0))
≤ Cr2+α ∀ 0 < r < 1
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for positive constant C = C (n, λ,Λ, α) > 0.

(ii) Claim ∃ 0 < µ < 1 depending on n, λ,Λ, α and a sequence of polynomials of degree 2

Pk (x) := ak + bk · x+
1

2
x⊤Ckx

s.t. ∀ k = 0, 1, · · · , and P0 = P−1 ≡ 0

aij (0)DijPk = 0, ∥u− Pk∥L∞(Bµk) ≤ µk(2+α) (1.3)

|ak − ak−1|+ µk−1 |bk − bk−1|+ µ2(k−1) |Ck − Ck−1| ≤ Cµ(k−1)(2+α) for C = C (n, λ,Λ, α) > 0 (1.4)

We justify that our target theorem follows from the claim. Note by (1.4), ak, bk and Ck all converges and

we define the limiting polynomial

p (x) = a∞ + b∞ · x+
1

2
x⊤C∞x

Notice ∀ |x| ≤ µk

|Pk (x)− p (x)| ≤ C
{
µ(α+2)k + |x|µ(α+1)k + |x|2 µαk

}
≤ Cµ(2+α)k

Hence ∀ |x| ≤ µk

|u (x)− p (x)| ≤ |u (x)− Pk (x)|+ |Pk (x)− p (x)| ≤ Cµ(2+α)k =⇒ |u (x)− p (x)| ≤ C |x|2+α ∀ x ∈ B1

(iii) We prove the claim by induction. Case k = 0 holds trivially. Assume for ℓ, and prove for k = ℓ+1. Define

ũ (y) :=
1

µℓ(2+α)
(u− Pℓ)

(
µℓy
)

for y ∈ B1 =⇒ ∥ũ∥L∞(B1)
≤ 1 by assumption on ℓ

Now ũ ∈ C (B1) is viscosity solution of ãijDij ũ = f̃ in B1 with

ãij (y) =
1

µℓα
aij
(
µℓy
)
, f̃ (y) =

1

µℓα

{
f
(
µℓy
)
− aij

(
µℓy
)
DijPℓ

(
µℓy
)}

To apply Lemma 1.6, we see, due to Hölder Continuity of {aij}, f at 0 in Ln sense

∥ãij − ãij (0)∥Ln(B1)
≤ 1

µℓα
∥aij − aij (0)∥Ln(Bµℓ) ≤ [aij ]Cα

Ln
(0) ≤ δ

∥∥∥f̃∥∥∥
Ln(B1)

≤ 1

µℓα
∥f∥Ln(Bµℓ) +

1

µℓα
sup

y∈B
µℓ

∣∣D2Pℓ

∣∣ ∥aij − aij (0)∥Ln(Bµℓ)

≤ δ +

(
ℓ∑

i=1

sup
y∈B

µℓ

∣∣D2Pi −D2Pi−1

∣∣) δ

≤

(
1 +

ℓ∑
i=1

µ(i−1)α

)
δ ≤ (1 + C) δ for C = C (n, λ,Λ) > 0

Now take ϵ = Cδ and apply Lemma 1.6, ∃ h ∈ C
(
B3/4

)
with ãijDijh = 0 in B3/4 and |h| ≤ 1 in B3/4 s.t.

∥ũ− h∥L∞(B1/2) ≤ C {ϵγ + ϵ} ≤ 2Cϵγ
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We write P̃ (y) := h (0) +Dh (0) + y⊤D2h (0) y/2. By Interior Estimate for h∥∥∥ũ− P̃
∥∥∥
L∞(Bµ)

≤ ∥ũ− h∥L∞(Bµ)
+
∥∥∥h− P̃

∥∥∥
L∞(Bµ)

≤ 2Cϵγ + Cµ3 ≤ µ2+α

choosing µ small and then ϵ small. Rescaling back we see∥∥∥u (x)− Pℓ (x)− µℓ(2+α)P̃
(
µ−ℓx

)∥∥∥ ≤ µ(ℓ+1)(2+α) ∀ x ∈ Bµℓ+1

Hence for k = ℓ+ 1, we define

Pk (x) = Pℓ+1 (x) := Pℓ (x) + µℓ(2+α)P̃
(
µ−ℓx

)

Theorem 1.4 (Cordes-Nirenberg type Estimate). u ∈ C (B1) be viscosity solution of aijDiju = f in B1. Then

∀ α ∈ (0, 1), ∃ θ = θ (n, λ,Λ, α) > 0 s.t. if

(
1

|Br|

ˆ
Br

|aij − aij (0)|n
) 1

n

≤ θ ∀ 0 < r ≤ 1

then u is C1,α at 0. Moreover, there ∃ affine function L s.t.

|L (0)|+ |DL (0)| ≤ C

(
∥u∥L∞(B1)

+ sup
0<r<1

r1−α

(
1

|Br|

ˆ
Br

|f |n
) 1

n

)

with estimate

∥u− L∥L∞(Br(0))
≤ Cr1+α

(
∥u∥L∞(B1)

+ sup
0<r<1

r1−α

(
1

|Br|

ˆ
Br

|f |n
) 1

n

)
∀ 0 < r < 1
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