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1 Viscosity Solutions

1.1 Alexandroff Maximum Principle

We provide the problem setting

(i) Q € R™ bounded and connected.

(i) Uniformly Elliptic. Given A\, A > 0, let a;;(z) € C () s.t. A €] < a;j(z) && < A > Vo e, eRm

e Let operator L in Q s.t. Lu = a;;(z)Diju for u € C? (). We call u € C? (2) a supersolution of Lu = 0
in Q if Lu < 0. Notice V ¢ € C?(Q) s.t. Ly > 0, we have L (u— ) < 04in & = u — ¢ has no local

interior minimum. Hence if 3 xg € Q s.t. u — ¢ attains local mimimum, we know Ly(zg) < 0.
o Geometrically, u — ¢ has a local minimum at z¢p € = ¢ touches u from below at zy up to constant.

Definition 1.1 (Viscosity Solution). f € C (2). We call u € C () a viscosity supersolution of Lu = f in Q if
Vao€QandV ¢ € C*(Q) s.t. u— ¢ has a local minimum at o = Lp(z¢) < f(20)

u € C(Q) a viscosity subsolution of Lu = f in Q if
Vao€Qand V¥ ¢ € C%(Q) s.t. u— ¢ has a local marimum at o = Lp(zo) > f(z0)

u € C(Q) a viscosity solution if both viscosity supersolution and subsolution.

Now we define weakly the class of solutions to elliptic pdes.

o V o € C? at zq, define ey, - - , e, eigenvalues of Hessian D?p(xq). We see
n n
Lo(zp) <0 <~ Z aij(x0)Dijo(z0) <0 = Zakek <0 forA<ap<A
ij=1 k=1
< Zaiei+2ai6i§0<:> ZaieiSZai(—ei):>)\Zei§AZ(—ei)
e; >0 e;<0 e; >0 e; <0 e; >0 e; <0

This is to say, at xg, positive eigenvalues of D?¢(z0) are controlled by its negative eigenvalues.

Definition 1.2 (Solution Class S (A, A, f)). f € C(Q). We say u € C () belongs to ST (N, A, f) if

VageQandV ¢ € C*(Q) s.t. u— o has a local minimum at xg = ) Z e; + A Z e; < f(xo)
e; >0 e; <0

where ey, - , e, are eigenvalues of D*p(x). Similarly, u € C (Q) belongs to S~ (N, A, f) if

VaoeQandV ¢ € C? () s.t. u— ¢ has a local maximum at ro = A Z e+ A Z e; > f(zo)
e; >0 e; <0



SMA ) =ST A NS (LA f).

Remark 1.1. (i) Viscosity supersolution to Lu = f in Q under uniform ellipticity = u € ST (\,A, f).
Viscosity subsolution to Lu = f in Q under uniform ellipticity — u € S~ (A, A, f).

(1)) ST (A f), S (N A, f) also include solutions to fully non-linear pdes.
Example 1.1 (Pucci Equations). 0 < A < A.
o Let Aya = { A is n x n symmetric matriz | X|¢|* < A §& <A €] V € e R}

o For M n x n symmetric, we define Pucci extremal operator

M~ (M) = M- ()\, A, M) = inf AijMij> M+ (M) = M+ ()\, A, M) ‘= sup AijMij
A€AN A A€A A

If denote e1,--- ,e, as eigenvalues of M, we see

MTNAM) =X i +AD> e, MTAAM) =AY e;i+A) e

;>0 ;<0 ;>0 ;<0
e Pucci’s Equations are given for f,g € C ()
M-(MNAM)=f, MYANAM)=g
Hence u € ST (\A, f) &= M~ (/\,A, D2u) < f in viscosity sense, i.e.
VageQandV ¢ € C*(Q) s.t. u— ¢ has a local minimum at o =—> M~ ()\7A,D2<p(xo)) <f
ueS  (MA, f) &= Mt ()\,A,Dzu) > g in viscosity sense, i.e.

Vo €QandV ¢ € C*(Q) st. u— ¢ has a local mazimum at zg => M~ (X, A, D*p(z0)) > g

o For any two n X n symmetric matrices M, N
M= (M) + M~ (N) < M~ (M +N) < Mt (M) + M~ (N) < M (M +N) < M (M) + M+ (N)

Now we derive Alexandroff Maximum Principle for viscosity solutions. Let v € C (Q) for open convex set (.

e Convex Envelope of v in Q is I’ (v) (x) :=sup{L (z) | L < v in Q, L an af fine function} V z € Q. Tt is
L
indeed convex function, as I' (v) (tx1 + (1 — ) x2) < tT (v) (x1)+ (1 —t) T (v) (z2) for ¢t € [0,1], x1, z2 € 2.

o {r€Q]v(z)=T(v)(x)} is Lower Contact Set of v. Points in the contact set are contact points.
e We need classical Alexandroff Maximum Principle

Lemma 1.1. u € CY1 (By), with u >0 on OBy. Then with T, as convex envelope of —u~ = min{u,0},

1
supu~ < c¢(n) / det D?u
B B ﬁ{u:l‘u}

Theorem 1.1 (Alexandroff Maximum Principle - Viscosity Version). u € St (\, A, f) in By with u > 0 on 0B,
for f € C(Q). Then with T, as convex envelope of —u~ = min{u, 0},

supu™ < c(n, A, A) ( / (f*)")
B, Bin{u=I,}



Proof.

(iii)

(i) We observe Ty, () := sup{L (z) | L < min{u,0} in By, L an af fine function}. Let xy be contact
point, i.e., u(zg) = Ty (20). V\%LOG take xo = 0, and rechoose a frame where v > 0 in B; with u(0) = 0.
The latter makes sense by substracting a supporting plane at xy = 0. We first show that at the contact
set zg = 0, f(0) > 0. Take h(x) = 76% in By. Thenu—h =u+ e‘ml has minimum at zp = 0 since
u >0 in By and u(0) = 0. We use that u € ST (\, A, f) = A}, Sgei + A, _gei < f(xo). Here we
need to compute eigenvalues for D?h(0), which are e; = —e V 4, all negative. Hence —nAe < f(0). Take
e — 0 gives 0 < f(0).

We show that at zg € Q contact point, for some affine function L, some constant C' = C' (n, A, A) > 0 and

any x close to xg s.t. e(x) — 0 as x — xq,
L(z) < Ty (2) < L(z) + C{f(z0) + €(x)} |z — 20]* ¥z € B

As before, we choose xy = 0, and since the growth rate for L is controlled by quadratic term \m|2, it suffices
to prove
0<Ty(z) <C{f0)+e(@)}|z]” VaehB

We need to estimate for small 0 < r < 1, C, := L maxT, (z). We first fix r > 0. Since I, is convex

"

function in B, C Bj, we know ', attains maximum in B, at some point (0,---,0,7) on the boundary.
Notice the set {x € By | T, () < T, (0,---,0,r)} contains B, and is convex. This is because

VaeB,, I',(x) <maxT, () <T, (0,---,0,7)

max
B,

Vay, 29 € {Ty(z) <T,(0,---,0,7)}, and t € [0,1], we have

Ty (e + (1 —t)xg) <tly (x1)+(1 —t) Ty (22) <TW (0,---,0,7) = tax1+(1 —t) a2 € {Ty (x) <TW(0,---

Hence it follows that V (2/, r) € By, we have C,.r> =T, (0,---,0,7) < T (2/,7).

Take N > 0 to be determined. Let R, = {(2',2,) € By | |2'| < Nr, |z,| < r}. We construct a quadratic
polynomial that touches u from below in R, and curves up fast. Let b> 0 and h (z) = (z, +7)* — b|2/|?
o for z, = —r, h(z) = —blz/|* <0
e for [2/| = Nr, h(z) = (xn+7°)2 —bN?r?2 < 4r? —bN%r? = (4 —bN?)r> <0 if let b=
o for x, =7, h(z) = 4r2 —b|2/|* < 4r?

Now let h (z) := %h(x) = % (zn+71)° — S5 |x . Recall we chose u > 0 on B; with u(0) = 0, and
I'y < u due to convex envelope

on OR E(m’,r) < % (27‘)2 =Cr?=T,(0,---,0,7) < Ty (2 r) <u(a',r) ifax,=r
" h(z) <0<T,(z) <ul(z) otherwise

~ C,r?

h(0)= =5 >0=T () =u(0) at0
Hence lowering h properly we see u — h has local minimum somewhere inside R,. We compute eigenvalues
of D27L, e; = %7 €, " ,En = —2%2'. Again we use that

C, C,
ueST(\A f) = )\——2A(n—1)N— max f
R,

Choose N = N (n, A\, A) large so that C, < /\maxf < max[, (z) < ﬁmaxf Note maxf — f(0) as
R, B, R, R,

r — 0, which coincides with T, (z) < C {f(0) + e(z)} || for r? taking the place of |z|>.



(iv) By above we have ', (z) € C*! in By and
det DT, (z) < C (n,\,A) (f (z))" a.e. z € {u=T,}

Apply Lemma 1.1 to T,

1.2 Harnack Inequality
We build up ingredients starting from Calderon-Zygmund. Recall we're in R™.
e Let Q1 be unit cube. Cut into 2" equally sized cubes, take as first generation.
e Do the same cutting for the smaller cubes. Repeat. Cubes from all generations are called dyadic cubes.
e Any (k+ 1)-generation cube @ comes from k-generation Qv, as predecessor of Q.
Lemma 1.2 (Calderon-Zygmund Decomposition). f € L' (Q1), f > 0, and o > ﬁle f is fixed constant.

Then 3 sequence of nonoverlapping dyadic cubes {Q;} C Q1 s.t.

1
f(x) <a a.e.ian\UQj, a< — fdz <2"a Vj
> Q51 Jo,

Proof. (i) Cut @ into 2" dyadic cubes. We design algorithm to keep cube @ if o < |Tl?| fQ f. For others
keep cutting, and continue the process. Let {Q;} be the sequence of cubes we’ve kept. Note such process
is infinite, i.e., for any generation, there must exist some cube that needs to be cut. This is because if 3
some generation s.t. all cubes are kept, then it’s predecessor must be kept, by induction from the base case
o> IQilll le f, which contradicts it being cut.

(ii) Also, any predecessor @ of @); that we’ve kept has to satisfy ﬁ fQ fdz < a. But |Q| = 2" |Q,], so for Q;
we've kept, a < \Qfll fQ' f< 2”@ fQ fdx < 2"a.
J J

(iii) Let FF = Q1 \ Uj Q;, and V = € F, by our choice of {Q,}, there exists a subsequence of cubes Q' 2 z s.t.

1
Q| Jor

f<a and diam(Qi)—H) as i — 0o

By Lebesgue density theorm, f < o a.e.in F.

Corollary 1.1. Suppose measurable sets A C B C Q1 satisfy:
(i) |A| < 6 for some § € (0,1)
(i) ¥ Q dyadic cube, |[ANQ| >6|Q] = é C B for @ predecessor of Q.
Then we have |A| < §|B|.
Proof. Apply Lemma 1.2 to f = x4 choosing a = 6 > ﬁ fQ Xa = |A|, we have a sequence of cubes {Q;} s.t.

. 1 n ,
xa(z) <o a.e.le\UQj, 6§—|Q_||A0Qj|§25 Vi
j J

But notice § € (0,1), so xa (z) < d ae. in Q1 \U;Q; < xa=0ae. in Q1 \U;Q; < AC,;Q; up to

set of measure zero. Also notice reason why next generation of cubes occur is |Q%| J. 0. XA = ‘A N @;’ < 9.
7 J

-
Qi



Now by assumption (i), since § |Q;| < |AN Q;|, we have @? C B Vj,so

AclJ@;cnB
i

upon relabelling @; so they’re nonoverlapping, we get

<> [ane <58

<y |

O

Now we prove lemmas that lead to Harnack Inequality. Let @, denote cube with side length r > 0. The following

is key ingredient: If solution is small somewhere in (D3, then it’s under control in a good portion of Q.

Lemma 1.3. v € ST (\ A, f) in By for f€C (BQ\/E), Then 3 €9 >0, u € (0,1) and M > 1 depending only
onn, A, A s.t. if

u>0in By s, gfugl, ||f||L"( < €
3

Byyz) =
we have {u < M}N Q1| > u.

Proof. (i) Note By C Q1 C Q3 C By s Define g in B, 5 by

2
g(x):=—-M (1 — Z') for large B > 0 to be determined and some M > 0
n

We note that g =0 on 0B, 5. We also choose M according to 8 so that g < —2 in Q3.
Let w=wu+g in By ;. We wish to show that by choosing 3 large, we have

weST(\Af) in Bzﬁ\Ql

The idea is to construct function g that is concave outside @)1 so the contact set of w = u+g, i.e., correction

of u by g, occurs in Q1. In fact, we localize where contact sets occur by choosing suitable functions.

(ii) Suppose @ is quadratic polynomial with property w — ¢ has a local minimum at z¢ € By /n- Rewrite to see
w—p =1u— (¢ — g) has local minumum at zg. By assumption v € ST (A, A, f) < M~ ()\, A, Dzu) <f

in viscosity sense for M~ Pucci extremal operator, we have
M~ (Aa A7 D2<)0 (.130)) +M™ ()‘7 Aa _D2g (xo)) <M~ (Aa Aa D230 (xo) - D29 (1‘0)) < f ('rO)

In order to show that M~ (/\,A,ngo (xo)) < f(z0) ¥ 2o € By \ Q1, we omit a portion in By s by
choosing [ large so that
M~ ()‘7A7 _D2g (l’o)) >0 Vﬂ?o GBZ\/E\BI/ZL

To do so, we first need to calculate Hessian of g

M 2\ M 22\
xr xr
Diig(@) = 5.8 (1 - 4n> % = PP <1 T ) T

Let # = (|2],0,---,0), then eigenvalues of —D?g (z) are given by

p—2 N
2 M
et (z) = —B ( i ) ( b= | > — 1) multiplicity 1 e (x)=—=—p <1 — |:c|> multiplicity n—1

4n 2n 4n



We choose /3 large so for [z| > %, et (z) > 0 and e~ (z) < 0. Hence for |z| > 1,

M~ (N A, —D?g(x0)) = e (z) + (n — 1) Ae™ ()

M (BT s o]
x — 2 x
= — —_— . — — — L >
T NERTRIN A
if choose 3 large depending only on A\, A,n. Hence w € ST (A, A, f) in By \ Q1, or equivalently,

weST(MA, f+1n) in By

for some n € C§° (Q1) and 0 < n < C(n, A\, A).

(iii) Apply Theoreml.l to w in B, 4. Note by assumption, w = u + g > 0 on 9B, 5 and since infu < 1,

3
g < —2in @3, we have i(gfw = iélf (u+g) < -1 < supw~ > 1. Hence by choice of n
3 3 Qs

n

1<suwpw™ <C (/ (If] +77)”> S Olflln(s, ) +CHw =Tul N Q"
Q3 BQﬁﬂ{w:Fw}

Recall Hf”Ln(Bw;) < €q, so taking €y small enough we have

<CHw=Tu}NQi|"

M| —

Finally we notice w = I'y, convex envelope of —w~™ = min{w,0} —= w<0 = u(z) < —g(z) < M.

SC\{USM}]QQH% = choose ji € (O, (21C> )

DN =

O
Next we prove the complement lemma suggesting power decay of distribution functions under same assumptions.

Lemma 1.4. v € ST (\ A, f) in By for f € C (BQ\/E). Then 3 €p, € > 0, and C' > 0 constants depending
only onn, A\, A s.t. if

u201n By s, lélfu <1, ||f|Ln(B2ﬁ) < eo
we have {u >t} NQ1 <Ct <V it>0.

Proof. (i) We wish to show under above assumptions, for any k € Z, and M, p from Lemma 1.3

{u>MY Qi < -t

logt
. . k =77 log(1—
This makes sense if take M* = ¢, then k = l(l)oggj\z, so(1—p)" = ((1 — ) 10%M) = e= *7190(1%1\/1”) > 0.

(ii) For k = 1, this is direct result from Lemma 1.3. Suppose k — 1 holds, i.e.,
{u> M1 0@ < (1)t

We set A :={u> M*}NQ; and B := {u > M*"1} N Q,, we will show |A| < (1 — u)|B| by Corollary 1.1.

e Indeed AC BC Q1
e Since M > 1, |A] < [{u> M} NQ1] <1—p by Lemma 1.3.



e We hope to show if @ = Q.. (z¢) is a cube centered at xg with side length r in Q; s.t.

ANQI> (1 -p)|Q

then QN Q; C B for Q = Qs (x9). Suppose not, then 3 z € Q = Qs (wo) s.t. u(x) < MFL.
Consider transformation

x=zo+ry forye@ = z€Q=Q,(x)
and the function u defined on By 57 O Q1

- 1 1
w(y) = At (z) = WU(% +7y)

We know u > 0in By 5z = @ > 0in B, s, and 1€an i (y) < 1 due to existence of & € Q = Qs (o).
Y 3
Also, defining
2
~ r
fy) = Wf(x) Vye By,
We see, since 0 <r <1land M > 1

< 5 Wl sy ) S WL, ) < €0
L"(Bz\/ﬁ) M 2y/n 2v/m

|1

And obviously 4 € ST ()\,A, f), by Lemma 1.3, we have for u € (0,1)

p<laly) <MynQi=r"[{u(z) <M }NQ| = p|Q|<[|A°NQ| = |Q| < Q|

We’ve reached a contradiction.

We obtain C estimate for u on (1/4 using the above 2 lemmas.

Lemma 1.5. u € S (\A, f) in Quym for f€C (Q4\/ﬁ). Then 3 €y, C' > 0 constants depending only on n, A\, A
s.t. if

u>0in Qu/m, Ci)n/fugl, ||fHLn( )Seo
1/4

Quym

we have sup u < C.
Q14
Proof. (i) We prove that there exists constants § > 1 and My > 1 depending only on n, A, A s.t. if u (z¢) =
P > My for some g € By 4, then 3 {23} C By s s.t.

u(xy) > 0P for keN

which contradicts boundedness of v on B,,4 = supu < M.
By
(ii) Suppose 3 xg € By s.t. u(xg) = P > My with My, 6 to be determined. Also take @, (zo) with side
length r to be determined. The idea is to find 1 € Q4 /5, (o) so that u (x1) > §P. We start by choosing
r so that {u > g} covers less than half of @, (x), using the power decay for distribution function of w.

Note infu < inf u < 1. Hence by Lemma 1.4, we know 3 € > 0 s.t. taking t = £

Qs Q14 2
P P\ ¢




(iii)

(iv)

(v)

Choose 1 s.t. r < i and % >C (g)ie. The former gives @, (z¢) C Q1 while the latter gives

N |

1 P
m {U>E}QQT($O) <

Next we show for 6 > 1 with 6 — 1 small, 3 21 € Qq /z, (7o) s.t. u(x1) > OP. Show by contradiction.
Suppose u < 0P in Q. /. (z0). Consider transformation

r=x0+r1y fory€Qum = v € Qu(T0)
and the function @ defined on Q4 7 O By /5

OP —u(x) OP —wu(xg+ry)

W=G=p - @-1P
We observe u < 0P in Q4 s (z0) = @ > 0in By sz, and 4(0) =1, Q3 C By i = incg u(y) < 1.
yels
Also, defining
2
x r
=—_—— B

We see, upon choosing P s.t. r < (§ — 1) P

|1

Notice since u € S (A, A, f) = ST (A A, f) NS~ (A A, f), we make use of u € S~ (A, A, f) to see that

L™ (B, ) = ®-1)P Hf”L"(BZﬁ) S €

V2o € QuymandV ¢ € C? (Quym) s.t. u— has local maxzimum at xo = A Z e+ A Z e; > f(xo)

e; >0 e; <0
<:>—AZ( Z —e;) > f (w0) <:>)\Z €1+AZ —e;) < —f (x0)
e; >0 e; <0 e; <0 e; >0
rewriting “u — ¢ has local maximum at xy” as “—(u—¢) = —u — (—¢) has local minimum at z”,

and observe now —e; are positive eigenvalues for D? (—¢p) at xp and e; negative eigenvalues. We see
—u € 8T (A A, —f). Hence obviously @ € ST ()\,A,f) in By s, we may apply Lemma 1.4 to 4. Note

u(z) <L = ay) > Z 2, and is large for 6 close to 1. Hence we’ve reached a contradiction

P 0-3\ " 1
{ugi}ﬂQr(:ﬁo):{ﬂz SC(&%) <3 for @ closetol = 1<1

_
‘Qr (1'0)|

Notice we’ve proved 3 6 = 6 (n, A, A) > 1 s.t. if u (29) = P for some x¢ € By /4, then
31 € Quymy (T0) C Banr (o) 8.t u(w1) > 0P

provided 0 < r < i and
Cn,\A\)P 7 <r<(@—-1)P

n

Hence we need to choose P so that P > (%) " We take r = CP—%.

Now we iterate above result. For k** iteration, we treat P above as 8*~1P, so

e =C (0F71P) " = cp--DiEp-i



and we’ve obtained a sequence {zy} s.t.V k € Z
u(xk) >0 (Qk_lP) =0*P  for some xj, € Bonr, (Tk—1)

In order to ensure {z} C By /o, we let ZkEZ+ 2nry < i. So choose My s.t. V P > My the sum holds, i.e.

> . e . C N\
Z 8nrpy <1 = 8n029_(k_1)? < Mg < P» = choose My > ()
keZ, k=1

Now Harnack’s Inequality is a direct consequence for above lemma.

Theorem 1.2 (Harnark’s Inequality - Viscosity Version). u € S (A, A, f) in By for f € C(By) with u > 0 in
B;. Then for C=C(n, \, A) >0

sup uSC{ inf w4+ n }
o o 1l 2n By

Proof. Take u € S(\, A, f) in Qq /7 st. u > 01in Qy 5. To apply Lemma 1.5 we need 2 more assumptions on
the solution. Hence consider

Us = Y ford>0 VareQum

inf 5+ =1 fll
zelgl/4u+ o ”fHL (Qaym)

which indeed gives inf wug
€Q1/4

IN

1 and || fs]

L (Qam) < ¢g where

f (@)
6181/4u+6+ €o ”fHLn(

fs(x) = Jor6>0 VzreQun

Qaym)

x

Hence we apply Lemma 1.5 to us and see, letting § — 0

sup u < C<q inf u+ .
IGQI?M B {$€Q1/4 Hf”L (Q4ﬁ)}

We conclude by choosing a finite cover for B/, with cubes Q4. O

Corollary 1.2 (Interior Hélder Continuity - Viscosity Version). u € S (N, A, f) in By for f € C(B1). Then
u € C¥(By) fora=a(n,\A) € (0,1). Moreover for C =C (n,\,A) >0

Ju (@) —u(y)| < Clz -yl { sup[u] + an} for any ,y € By s
reby

1.3 Schauder Estimates

We provide the problem setting for Schauder’s Estimate for viscosity solutions.
(i) Uniformly Elliptic. Given A\, A > 0, let a;;(z) € C (B1) s.t. Mé[* < ay(x) €& < A|Ef* Vo € By, € € R™
(ii) f e C(B).

(iii) Recall Definition 1.1, u € C'(By) is viscosity solution of a;;D;ju = f in By if

Vo € By andV g € C2 (By) sit. zf u — ¢ has a local mini.mum at o = ai; (z0) Dij (x0) < f(20)
if u— ¢ has a local maximum at xy = a;;j (o) Dijp (x0) > f (x0)



Lemma 1.6 (Approximation). Let u € C'(By) be viscosity solution of a;;Diju = f in By with |u| <1 in By.

1

Assume for some 0 < € < 15,

llai; — ai; (0)||L"(B3/4) =

Then 3 h € C (Bsys) with a;; (0) Dijh =0 in Bssq and |h| <1 in Bsy s.t.

= Al e (5,,) < C {7+ 1o )
for C=C(n,A\,A) >0 and v =~ (n,A\,A) € (0,1).
Proof. (i) By Poisson’s Integral Formula, we solve for h € C (§3/4) NnCce> (B3/4) explicitly s.t.

A4 (0) Dijh =0 n 33/4
h=wu on 0Bsy

where u € C (8B34) C C (B1). Here the maximum principle for harmonic functions implies that || <

sup u(x) < 1. Note that w € S(\, A, f) in By, so by Interior Holder’s Continuity 1.2 for viscosity
x€0B3 4

solutions = we have u € C* (B3,4) with @ = a(n, A\, A) € (0,1) and estimate

lulloa (@, < € (14 1l n s )
Then by Global Hélder Continuity for h € C (Eg /4) harmonic function in By, with A = u on B34, and
that u € C* (833/4) = we have h € C*/? (§3/4) with estimate

1llcerazy ) < Clllon(on,) < Cleleags, y < C (11,

(ii) We need 2 ingredients before estimating v — h.

First, since u — h = 0 on B34, i.c., |lu — h||LOQ( )= 0, consider V 0 < 0 < &

0Bs/4

||U_hHLoo(333 ) - ”U_hHLoo(aB )
/4—06 3/4
o <Nl = llgarazy ) < Willowss(z, 0 Hhllourn(z, ) < C (141, )

= =Bl e o, ) < CO2 (14 11l (1.1)

Second, consider V 0 < § < i, V 29 € B3/4_s, we take some 1 € 0B; (70) and apply Interior C?-estimate
to h —h(x1) in Bs (x0) C Bs)y, using h € ce/? (B34)

1 1 @ a/2—
[D*h(wo)| < Oy swp Jh(e) = h(e)] < O g2 bl cors(s, ) < OO/ (1412 s))
xr s(Zo
= (1Dl s, ) < €022 (14 1F e (12)

(iii) Note u — h is viscosity solution to

aijDij (U — h) = f — (Clij — Q45 (0)) Dijh =F in 33/4
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By ABP Method Theorem 1.1, the above estimates (1.1), (1.2) and assumption on a;;

= bl e (3, ) < 1= Bl (080 + CIF o (0 s)
< o=l (o4 s) + C 1P Rl (5, Nois = s Oln(y) + €M i
<0 (572 4 6°272) {14 1l o } + C 1 iy

Hence take § = €'/ < i 50 04/2 4 §2/272¢ = 2¢*/4, Take v = T

Now we're ready to state the Schauder estimate with definition for the weighted Hélder semi-norm below.

Definition 1.3 (Holder Continuity in the L™ Sense). g is Holder Continuous at 0 with exponent « in the L"
sense if

3=

1 1
o (0):= sup — [ — —q (0" < 00
9oy, (0) o<£1w<|3r|/3,,9 g(>|)

Theorem 1.3 (Schauder Estimate - Viscosity Version). u € C' (B1) be viscosity solution of a;;D;ju = f in By.
Assume both {a;;} and f are Holder Continuous at 0 with exponent o in the L™ sense for some o € (0,1). Then
w is C% at 0. Moreover, 3 polynomial P of degree 2 s.t.

[P (0)] +DP (0)] + [D*P (0)] < C (Il o (s, + 1 O)] + Sy, (0))
with estimate

e = Pl g, o < O ([l sy +1F O+ g, (00) VO <r <1

where C = C (n, MAa, [aij}ca” (0)) > 0.

Proof. (i) We first restate our target problem. Assume f (0) = 0, since if we consider v = u — bijxixj@ for
constant matrix {b;;} s.t. a;; (0) b;; =1,

aijDijv = f —a;; f (0)bij = a;; (0) Dijv (0) = f(0) — £(0) =0
Also assume [a;j],. (0) is small by rescaling, and by considering for § > 0 the problem
%,

u

Il o () + 5 [fle

(0)

e
Ln

we may assume [|ul| o p,) < 1 and [f]q. (0) < 4.
on
Hence it suffices to prove that 3 6 > 0 depending on n, A\, A, « s.t. if u € C'(B) is viscosity solution of

aijDiju = f mn Bl with

1

iy <1, losleg, @ <8 (g7 [ 107) <o vo<r<n

Then 3 polynomial P of degree 2 s.t.
P (0)] + [DP (0)] + |D2P (0)| < C
with estimate

lw = Pl oo (5, (0)) < Crite vo<r<l1
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for positive constant C = C (n, A, A, ) > 0.
(ii) Claim 3 0 < p < 1 depending on n, A\, A, @ and a sequence of polynomials of degree 2
I
Py (z) == ar + by, -x+§m Crx
st.Vk=0,1,---,and Php=P_1 =0
aij (0) DijPr = 0, |lu— Pillpoe(p ) < pkETe) (1.3)

lag — ap_1| + "V b — bp1| + p2F Y Cp — Cra| < CuF=DE+) for C = C (n, M\ A, 0) >0 (1.4)

We justify that our target theorem follows from the claim. Note by (1.4), ag, b and Cy all converges and
we define the limiting polynomial

p(T) = oo + boo -+ %xTC’oox
Notice V |z| < u¥
1Py (z) —p(x)| < C {u(a”)k + || pletDE 4 | M"k} < Otk
Hence V |z| < p¥
ju(@) = p(@)| < Ju(z) = P ()| + | P () = p (2)] < Ot = Ju(e) —p(2)| < Cla|™™ VaeB
(iii) We prove the claim by induction. Case k = 0 holds trivially. Assume for ¢, and prove for k = £+ 1. Define

_ 1 - .
a(y) = e (u— D) (b'y) forye B = @l oo (,) < 1 by assumption on €

Now @& € C'(By) is viscosity solution of a;;D;;t = f in B; with

- 1 ~ 1

ij (4) = e s (W), fly) = o (1'y) = aij (1'y) DijPe (1'y) }
To apply Lemma 1.6, we see, due to Hélder Continuity of {a;;}, f at 0 in L™ sense

_ 1
@ij — @i ()| g,y < e llaij = ai; (O pn(p ) < laijleg, (0) <0

. 1 1
< —= n + — sup |D?P| |lai; — ai; (0)|,.
7oy = 5 o,y * 2 00 1P s = iy O,
£
<6+ (> sup |[D?Pi—D?Pi4| |6
i=1 YEB,.0

4
< <1+Z,N—1>a>5g (1+C)8 for C=C(n,A\A) >0

i=1
Now take e = C'¢ and apply Lemma 1.6, 3 h € C (§3/4) with @;;Dijh = 0in Bg/4 and |h| < 1in Bsjy s.t.

1@ =Pl oo (5,,,) < CLe” + €} < 20€7
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We write P (y) := h (0) + Dh (0) + 3 D?h (0) y/2. By Interior Estimate for h

T

Lo (By Le=(By)

choosing p small and then e small. Rescaling back we see
Hu (z) — Py (z) — pftop (1 ‘z) H < ptHNEFe) y g e B et
Hence for kK = ¢ + 1, we define
Py () = Poyq (z) := Py (z) + p' T P ()

O

Theorem 1.4 (Cordes-Nirenberg type Estimate). u € C (By) be viscosity solution of a;;D;ju = f in By. Then
Vae(0,1),30=0(n\NAa)>0st if

1

1 2\

<|B| B|aij_aij(0)|> <f Vo<r<i1
T ke

then u is C1 at 0. Moreover, there 3 affine function L s.t.

1

—a 1 n n

L) + DL ©O)] < C [ llull ez, + sup 7! ( / |f|)
o<r<l |Br| /B,

with estimate

1
1 =
u— L} < Ort e | |y Jrsuprla(/ n) Vo<r<l1
Ju = Ll 5,00 <|| om0 (7 [ 1
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