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Chapter 1

Functions of Bounded Variation

1.1 Functions of Bounded Variation and Caccioppoli Sets

1.1.1 Definitions and Semicontinuity

Definition 1.1.1 (BV Functions). Let Q2 C R™ be open set. f € L'(9).
[ Dsl=sun( [ feicgds g € C2R o) < 1) (1.1)

feBV(Q) if [,|Df] <oo. BV(Q) is space of L'(2) functions of bounded variation in Q.

Example 1.1.1. If f € CY(Q), [, |Df| = [, |V fldx where V f € C(Q;R™) is classical gradient. If f € W1(Q),
Jo|Df] = [ |V flde where V f € L*(Q;R™) is weak gradient.

1 reFE

0 zeR\E characteristic on E with C? boundary.

Example 1.1.2. We study ¢g(x) = {

o If Eis bounded, ||¢pll11 o) = [ENQ| < o0 sopp € LY (). But Vg distributional derivative is vector-
valued Radon measure instead of L*()) function, hence o ¢ W11(Q). But on the other hand, we may
compute [, |Dog|. Let g € CH(Q;R™) s.t. |g| <1, so by Gauss-Green formula

/ngdivgdm:/ divgda::/ g-vdH, 1 < H, 1(0ENQ) (1.2)
Q E oE

for v outer unit normal to OE. Taking supremum in g yields [, |Dyg| < oo. Thus W (Q) C BV ().

o We in fact prove [, |Dop| = H,—1(0ENQ). Since E C* boundary, v € C*(OE;R™) with |v| = 1. Since
OE is closed in R™ and R™ is normal, we may apply Tietze Extension to extend v to N € C1(R";R")
with |N| < 1. By Urysohn’s there exists n € C§°(Q) s.t. |n| <1, so let g =nN € C}H(Q;R")

/cpEdivgdx:/ divgdx:/ 77N~VdHn,1:/ ndH,_1
Q E OFE OE

Take supremum in g on LHS and in n on RHS yields (due to H,,—1L0F is Radon measure on R™)
[ 1Deel = supl [ ndH.oy |0 e G (@), Il 1) = Hia (BN ) (13)
Q OF
Hence (1.2) and (1.3) together gives, for E C? boundary

[ 1Desl=Haa0E N9 (1.4)

Remark 1.1.1. For f € BV(Q), the duality pairing (Df, g) :== — fQ fdivgdz defines the distributional gradient

Df € (C5(Q;R™)) because [, |Df] = SUPgecl (QiRn) % < 0o. By Riesz, the bounded linear functional D f
on Cj(4;R™) defines a vector-valued Radon measure Df on Q with [, |Df| the total variation of Df on .
Since |Df| is a Borel measure over Q, one may measure [, |Df| for A C Q not necessarily open. In particular,
if f = pg for some E bounded and C? so that o € BV (QQ), since the two Borel measures |Dog| and H,,_1.0F

agrees on all open sets as in (1.4), they agree on all Borel sets.

1



2 CHAPTER 1. FUNCTIONS OF BOUNDED VARIATION

Definition 1.1.2 (Perimeter & Caccioppoli Set). Let 2 C R™ be open and E a Borel set. The Perimeter of E
in § is
P(E) = [ Dol = su( [ divgds | € CY@R"), o] < 1) (1.5
Q E

If Q = R™ write P(E) := P(E,R™). The Borel set E is a Caccioppoli Set if it has locally finite perimeter, i.e.,
P(E,Q) < o for each bounded open Q0 C R™.

Remark 1.1.2. One has characterisations for Caccioppoli Sets E
e FE is a Caccioppoli Set iff there exist vector-valued Radon measure w over R™ s.t.

1. w has locally finite variation, i.e., for each bounded open Q C R™, |w|(€)) < oo
2. for all g € C§(R™) s.t. |g| <1, one has [, divgde = [g-dw

Proof. = Since for each  bounded and open, P(E,Q) = [, [Deg| < x iff g € BV(Q2), Dyg defines
a vector-valued Radon measure with locally finite variation over R". Let w = —Dyp, so for each fixed (2,

/g'dw:f<DgoE,g>:/@Edivgdx:/divgdx
Q E

<= Suppose such w exists. Then for any g € CZ(;R") s.t. |g] <1

/ divgdx = /g cdw < |[w](Q) < o
E
take supremum in g on LHS gives P(E,Q) = [, |[Dyg| < |[w|(Q) < oco. O

e For E any Borel Set, suppDypgr C OF where
suppDpp = R"™\ U {A open | Vg € Co(A;R"), g <1 = /g -Dygp = 0}

Proof. For any x ¢ OF, there exists A open neighbor of z s.t. either A C F or A C E°. If A C E°,
¢op =0on A, so for any g € C{(4;R"), |g| < 1 one indeed has [g-Dpp = — [ ppdivgdz =0. f AC E,
o =1on A, so for such g, [g-Dpp = — fE divgdz = — [ divgdz = 0 since g is compactly supported
and one apply the divergence theorem. Thus for any = ¢ OF, x ¢ suppDyg. O

o FE is a Caccioppoli Set iff the Gauss-Green formula holds in a generalized sense, i.e., for any Q C R™ open
and bounded, and for any g € C§(;R") s.t. |g] <1

/divgdm:—/ g-Dyg (1.6)
E OE

Proof. — follows directly. <= By the previous item, faEg -Dyg = [ g-Dyg. Indeed, w := —Dyg
has bounded variation on each open bounded €2. Use the first item that characterises Caccioppoli set. [

e Given Caccioppoli set E, one has useful identification of o € BV
Corollary 1.1.1. For E Caccioppoli, and 2 C R™ open. If either E or § is bounded, ¢ € BV ().

Proof. Since either E or § is bounded, ||¢g| 11 q) = [E N Q| < oo hence g € L'(Q). Now one compute

fQ |Dyg|, and may proceed in 2 directions. If €2 itself is bounded, since E Caccioppoli gives locally finite
perimeter, indeed [, [Dypg| < co. If on the other hand, E is bounded, for any g € C§(;R™) s.t. |g] <1,

using (1.6)
/@Edivgdx:/divgdx:—/ g-Dyg
Q E OF

OF is bounded and closed, hence compact. Then one may cover OF using sufficient large open ball Bg,
and since FE is Caccioppoli, |[Dyg| defines locally finite variation positive measure

—/ g~DcpE§/ |Dog| < oo
oFE BrNQ
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Theorem 1.1.1 (Semi-continuity). Let @ C R"™ open. {f;} C BV(Q) s.t. f; — f in L}, .(2), then

loc

[ 1A < timiut [ Dy (1.7)
Q I JQ

Proof. For any g € C}(Q;R") s.t. |g] <1

/ fdivgdz = lim / fjdivgdzr < liminf|D f;]
Q j—oo Jq Jj—o0

take supremum in g on LHS. O

Remark 1.1.3. The equality in (1.7) may not be achieved. Let Q@ = (0, 2m) and f;(z) = %sin(jx). Note

fO% |% sin(jz)|dr < 27% — 0 so fj = 0in L'(0,27). But fj(x) = cos(jx) and fo% |Df;| = fO% | cos(jz)|dx = 4.
Proposition 1.1.1. For Q C R™ open, BV () with norm ||f| gy = |Ifll.: + [ |Df| is a Banach Space.

Proof. That ||f| g, defines a norm follows from L' norm and homogeneity, subadditivity of total variation.
To see BV () is complete, take Cauchy sequence {f;} in BV (). Since {f;} is already Cauchy in L'(f2),
there exists f € LY(Q) s.t. ||f — f;]| . — 0. Also, there exits N s.t. Vm,n > N, [, |D(fm — fn)| < 1, one has
JoIDfj < max Jo | D fil+1 uniformly bounded. Hence (1.7) semicontinuity gives [, [Df| < coso f € BV ().

Tt suffices to show Jo|D(f = f;)| = 0. For any e > 0, there exists N s.t. for any j,k > N, [, [D(f; — fr)| <e.
Fix j, apply (1.7) semicontinuity to {f; — fx}x so [, |D(f; — f)| < likminf JoID(f; — fr)| <e. Takee to 0. O
—00

loc

Proposition 1.1.2. Let Q C R™ open. f, f; € BV(Q) s.t. f; — f in L},.(Q) and [,|Df| = lim [, [Df;|.
j—o0

Then for any A C Q open, one has certain reverse direction to (1.7)

/ |Df|zlimsup/ |Df;l
ANQ j—0 JANQ

in particular, if faAmQ |Df| =0, one has

[ 1051 = tim [ D1, (1.9
A i=0J4
Proof. Let B :=Q\ A so B C Q open. By semicontinuity (1.7)

[ 10s <timint [ 1pg1 [ |pfi <timint [ Dy
A =0 Ja B ji—0 B

one calculate

[ s+ [ ipf1= [ s = 1w [ Ds
ANQ B Q I=0J0
Zlimsup/ |ij|+li_minf/ |Df;l Zlimsup/ |ij|+/ |Df]
ji—=0  JANQ J—= JB i—=0 JANQ B

since f € BV (), indeed [, |Df| < oo so one may cancel out. To see (1.8), one notice A C €. O

1.1.2 Approximation by smooth functions

neCP R { .

Definition 1.1.3. n(z) is mollifier if < suppn C By If moreover, = 7 s positive symmetric.
A n(x) = p(la)

0 |z| > 1
" . . . — 1 — =
Standard example for such positive symmetric mollifier is n = Tra" where y(x) {exp( |x\21—1) 2] < 1
Definition 1.1.4. Given a positive symmetric mollifier n, the rescaled mollifier n.(x) = E%n(%) satisfies
suppn. C B.. Given f € L} (), define its mollification f. :=n. * f

loc

o) = o [ i) = (0" [ @@ -ede= [ a@feeds )

Lemma 1.1.1. One has tools from mollification

o f.€C®RY), f. — fin LL (Q). If f € LX), f. — f in L'(Q).

loc
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o I[f A< f(z) < B for any x € Q, then A < f.(x) < B for any x € Q.

o If f,g € LY(R™), then fRn fegdx = f]R” fgedx.

o If f e CYR"), then (& f)e = 3% (f2) fori=1,---,n

e supp f:={x € R* | f £0} C A, then supp f. C A. := {z | dist(z, A) < e}.
Proposition 1.1.3. Q C R" open, f € BV(Q). For ACC Q open s.t. [,,|Df| =0, one has

[ 1ps1 = tim [ 1D1]aa (1.10)

Proof. Since f € L*(Q), f. — f in L*(£2), by semicontinuity (1.7), one has [, |Df| < lim iglf J 4 IDf-]. Tt suffices
e—
to prove [, |[Df| >limsup [, |Df.|. For any g € Cj(A;R") s.t. |g| < 1, using tools from mollification
e—0

/A Fodivg dz /A F(divg)e do = /A Fdiv(g.) da

lg| <1 = |g:| <1 and suppg C A = suppg. C A.. Hence taking supremum in g

IRCZE /A DJ]

Take lim sup on LHS and use continuity from above on RHS (f € BV () defines a Radon measure |D f])

lircflj(l)lp/ IDfa|<hm/ IDf| = /\Df|

Now by our assumption, RHS equals [, [Df]. O

Remark 1.1.4. Note in (1.10) we require A CC  not because we need boundedness, but because we wish that
A and A; do not touch ). And this problem is resolved for taking 2 = R™, and indeed, one may do so for
A=A, =R" (0A =0R" =@). Now for any f € BV(R"), one has

/|Df|zlim/ \Df.|de (1.11)
Rn e—0 Rn

Indeed for E bounded Caccioppoli, o € BV (R™) by Corollary 1.1.1, so (1.11) applies to ¢g.

(1.10) motivates our approximation of f € BV () using smooth functions. Note approximation in BV norm
should not be expected since the BV -closure of C°°(Q) is WH1(Q) € BV (Q).

Theorem 1.1.2 (Approximation using C*). Q C R™ open, f € BV (). There exists {f;} C C>() s.t.

lim \f] — fldz=0 (1.12)
j—oo
hm/ \Df]|dx—/ |Df] (1.13)
Proof. Since f € BV (Q), |Df| on Q is finite measure, so V € > 0, there exists m € N s.t. fQ\Qo |Df| < e where
Q= Q| di Q > 1.14
k {xe | dist(z, 0 )>m+k} k>0 (1.14)

Define sequence {A;};>1 s.t. Ay := Qa, A; := Qi1 \ Qi for i > 2. Note A; are open and 2 C U;>1 Ai. There
exists smooth partition of unity {¢;} subordinate to the cover {A;} s.t. B

¢ € Cg°(4;), 0<¢; <1, Z@‘Zl
i1

Note for any z € £, at most 2 of the A; covers z, hence >, ¢; is finite sum pointwise, thus f = >">", f¢;. One
wish to construct certain mollification of f so that our desired approximation holds, and a common method is
to mollify each f¢; with e; chose for each ¢ > 1 then sum them up. Each ¢; needs to satisfy (let Q_; := @)

supp(ne, * (fdi)) C Qo \ Qg (1.15)
e % (foi) = Fill 1oy < €/2° (1.16)
[ % (fD$3) — fD@ill 1) < €/2° (1.17)
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and define f. := 372, ., * (f¢;). Note f. € C°°(£) since at each x € , at most 4 supports from (1.15) covers
x, hence finite sum of smooth functions gives smoothness. One immediately has from (1.16)

/Qlfa ~ flda < 2_;/9 i (Fs) — fil dr < e

hence (1.12) holds. And by semicontinuity (1.7), one has [, |[Df| < limi(r)lf Jo|Dfe|. Tt suffices to prove
E—r
Jo |Df| > limsup [, |Df:|. For any g € C5(€4;R™) s.t. |g] <1,
e—0

[ gdivgar =" [ v (fodivado =3 [ foudivn. +g)ds
Q i=17 9 i=179
notice

div(¢ine, x g) = Déi - (ne, * g) + ¢ div (e, * g)
hence

/Q fodivgde = ; /Q J1div(gine, * g) — Do - (ne, * g)] dx
= /Qfdiv((bl Ne, x g)dx + ; /Q fdiv(g; ne, x g) dx — ; /Q D - (ne, * g) dz

- /Q (e v g)de + 3 /ﬂ (g +g)do =3 /Q ne, * (FDé1) - g do

notice the pointwise finite sum implies

Y bi=1 = ) Dp;i=0
i=1 i=1
hence one may add back the sum of gradients
/ fedivgde = / fdiv(¢y ne, * g) dx + Z/ fdiv(gine, * g) dz — Z/ (e, * (fD¢;) — fD¢;] - g dz
Q Q i—2 9 =178

now by direct estimate, (1.15) and (1.17) respectively
| faivtorn <gyds < [ D7)
Q Q

Z/fdiv(qbingi*g)dxgi%/ |IDf| < 3e
/0 2\

i/ﬂ[nsi*(fD@)—fD@]'9d$<€

Hence taking supremum in g on LHS gives

/IDstS/ Df| +de = limsup/lDfslé/lDfl
Q Q e—0 Q Q

and (1.13) immediately follows. O

Remark 1.1.5 (Boundary Behavior of Smooth Approximation). Q@ C R™ open, f € BV (Q). For every e > 0,
N >0 and zo € 09, let f. be as above

1

lim—/ fe—fldx =0 1.18
p—0 pN B, (20)NQ | | ( )

Proof. For € > 0, choose m € N, Q as in (1.14) and f. as in Theorem 1.1.2. One wish to determine ig w.r.t. p
so that for any = € B,(x¢) N, one may write

oo

fe@) = f(@) = ey % (foi) = foi) = D (e, * (i) — foi)

1=

—

i=io
Making use of (1.15), one needs iy to be the smallest integer i s.t. 9B,(x¢) N touches suppn., * (f@;), i.e.

! <p< ! = [1] 2
S — S n=|-|—-—m—
m+io+2_p_m+io+1 0 p



6 CHAPTER 1. FUNCTIONS OF BOUNDED VARIATION

thus via (1.16), for some constant C' independent of p

/ @) Q| f|d$‘ < Z ||7757, f¢z) f(’bl”Ll(Q) < 02—1'0 _ 02,%
x)N

=10

where 277 goes to 0 exponentially fast. Hence multiplying both sides by and sending p — 0 gives (1.18). O

1.1.3 Compactness Theorem and Existence of Minimizing Caccioppoli sets

One shall recall the GNS type Sobolev Embedding and Rellich Theorem from Sobolev Spaces.
Lemma 1.1.2 (Sobolev Embedding). Q C R™ bounded open. 02 Lipschitz continuous. 1 < p < mn. Then

np

WhP(Q) C LYQ)  VY1<g< (1.19)
n—p
i.e., for any such 1< q < - there exists C = C(n, p, q, Q) s.t.
1l < ClUFllwrs (1.20)

Lemma 1.1.3 (Rellich-Kondrachov). © C R™ bounded open. 9 Lipschitz continuous. 1 < p < n. Then

WP(Q) cC LI(Q)  V1<g< 2 (1.21)
n—p
i.e., each uniformly bounded sequence {f;} in W1P(Q) norm has a convergent subsequence { f;,} in LI(2) norm
for each q € [1, ;25).

Using above lemmas, one may show for the corresponding BV Embedding and a Compactness Theorem.

Theorem 1.1.3 (GNS-type BV Embedding). Q C R™ bounded open. 02 Lipschitz continuous. Then

n

BV(Q) C LP(Q2) V1i<p< T (1.22)
n—
i.e., for any such 1 <p < 24 there exists C = C(n, p, Q) s.t.
1flle < ClSfl gy (1.23)

Proof. For any f € BV (£2), by smooth approximation Theorem 1.1.2, choose {f;} C C>(Q) s.t. ||f; — fll;. — 0
and [, |Df| = 1_irr(1)|ij|. Then there exists M large enough s.t. ||fjll gy < M uniformly. Since C>(2) C
1

W1(Q), by Sobolev Embedding (1.19), for any 1 < p < "=, there exists C' = C(n, p, Q) s.t.

1£illze < C (il + ”ij”Ll) <CM

uniformly in j. If p = 1, by definition of BV norm there’s nothing to prove. For 1 < p < -5, the uniform
boundedness of f; in LP implies, from reflexivity of LP and Banach Alaoglu, a weakly convergent subsequence
in LP. Still denoting f;, ones has fo € LP s.t. f; = foin Lp Since 2 is bounded, by Holder, a priori one knows

fis fo € L'(2), and for any g € (L'(2))* = L>(Q2) (so g7 € L”(Q))

[ =alde =1 [ (5= a5 g} ldo < | [ (5= fo

hence one has f; — fo in L'. But since we already know f; — f in L', by uniqueness of L' strong limit, fo = f.
Finally, by lower semicontinuity of weak convergence,

1 e < liminf £, < C'lim inf (Ifill s + 1Dl 0) = C ULl v

—0
L= (Q)

Theorem 1.1.4 (Compactness). Q C R" bounded open. 00 Lipschitz continuous. Then

BV(Q) cCLP(Q) V1<p< %1 (1.24)

i.e., each um'formly bounded sequence {f;} in BV (Q2) norm has a convergent subsequence {f;,} in LP(2) norm
for each p € |1 ). Moreover, the limiting function f € BV ().

’nl
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Proof. Let {f;} C BV () uniformly bounded by ”fj”BV(Q) < M. By smooth approximation Theorem 1.1.2,
V4, choose f; € C°(9) s.t.

3 1 ~
/|fj—fj|<m /\ij|dx§M+2
Q J Q
Now since {f;} C C*°(Q) is uniformly bounded in W"!(Q) norm, by Rellich (1.21), there exists convergent

subsequence, still denoting fj, in LP for any 1 < p < —25. Fix any such p, let f € LP(Q) s.t. Hf] — fH — 0.
P

Note € is bounded, hence Hélder inequality gives convergence in L' (p’ Holder conjugate w.r.t p)

/If—fjldxﬁ (/ f—fjpdx)p Q" =0
Q O

and then one may apply semicontinuity (1.7) which gives
/ |Df| < liminf |Dfj|de < M +2 < oo
Q j—o00
to conclude f € BV (2). It suffices to show ||f; — f[|,;, — 0. But by Minkowski

1fj = flle < Hfj N fjHLp + H‘f] B fHLp

where the former term convergence due to BV Embedding (1.22) and DCT
=Bl <GP+ 15 e L@ = |f- | —0
and the latter term converges by Rellich (1.21)

O

Theorem 1.1.5 (Existence of Minimizing Caccioppoli Set). Let Q C R™ be bounded open, and let L be a
Caccioppoli Set. Then there exists a Borel set E whose characteristic function ¢p minimizes the functional
[ |1Der| among all Borel sets F that agrees with L outside §, i.e., 3 E Borel s.t. E = L outside Q and

/IDcpEI S/IDsoFI (1.25)

for any FF C R™ Borel s.t. F = L outside ).

Proof. One wish to use compactness that extracts a convergent subsequence in L'. But notice we have no
information about regularity of 92, hence we first take R > 0 large s.t. Q@ CC Bg(0) ball of radius R and we
work with Br. Take a minimizing sequence of sets {E;} s.t. E; = L outside Q for any j and

lim |Dog,| = inf{/ |Dor| | F = L outside Q} (1.26)
j—=oo /L Br

notice L itself agrees with L outside {2 and since L is a Caccioppoli set, on B bounded open, fBR |Der| < oo.

Hence the RHS of (1.26) < co. Now we may take M large enough so fBR |Dog,;| < M uniformly bounded.

And since Bp are bounded, ¢, € L'(Bg) for any j, and in particular, ||¢g, |’L1(BR) < |Bgr| < oo uniformly,

so {¢g;} C BV(Bg) is uniformly bounded in BV norm. Bg has smooth boundary, so Theorem 1.1.4 gives
a convergent subsequence pg, — [ in LY(Bg). Again passing to subsequence, v, — [ pointwise a.e., but
g, are characteristic functions, so f = ¢ agrees with characteristic function of some Borel set E a.e. Indeed
E = Ej = L outside Q. And since pp; — ¢p in L'(Bg), by semicontinuity (1.7), [ [Dyp| < jlggo 5, 1D¢E;]|

/ |Dep| = inf{/ |Dor| | F = L outside 2}
Br Br

Finally we recover estimate on R™ from Bg. For any F' C R™ Borel s.t. F' = L outside 2

/|DS0E| :/ |D<PE|+/ |D<PE| :/ |D<PE|+/ |D<PL|
Br Bg, Br Bg,
g/ |DsoF\+/ \Dm:/ |D¢F|+/ |DsoF\:/|DsoF|
Br B}% Br BIC%
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Remark 1.1.6. One has information for the minimizing set E from Theorem 1.1.5.

o L determines boundary values for E. Since Dpg is supported within OF, or more particularly, imagine E
smooth so [ |Dep| = Hy,—1(0ENQ) really measures the surface area of OE within €, then (1.25) indicates
that ‘OF within )’ minimizes the surface area for all ‘sets within Q) that has boundary OL N 0N’

e Imagine OL N O fixed, then it determines a surface spanning OL N 0. But now curve the portion QN L
towards Q, it serves as obstacle forcing ‘OFE within 0’ away from the minimal surface spanned by OLNOS.

1.1.4 Coarea formula and Smooth Approximation of Caccioppolis sets

One shall recall Coarea formula for Lipschitz functions

Lemma 1.1.4 (Coarea Formula). Let f : R™ — R™ Lipschitz for n > m. Then for any A C R™ Borel

/\/det Df*Df)(z dx—/ Hy o (AN () dy (1.27)

With the Classical Coarea formula, one may prove for BV functions.

Theorem 1.1.6 (Coarea Formula). Q C R™ open. f € BV (). Denote F; :={x € Q| f(x) < t}, then

/Q|Df| = /O:O (/Q|D§0Ft|> dt (1.28)

Proof. <. First let f >0. Vo € Q, f(z) = [T ppedt = [[*(1 —¢p,)dt, so Vg € CHER) st |g] <1

oo oo
/fdivgdm:/ (/ (1—<th)dt) divgdx:/ (/ divgdm—/cppt divgdm) dt
Q a \Jo 0 Q Q

By Fubini, and then note compact support of g

*7/ /(pptdivgdxdtg/ /\D@Ft\dt
0 Q 0 Q

Then let f < 0. Va € Q, f(x) = f or, dt, soVg e CHR) st |g] <1

0 0 0
/fdivgdx:—/ (/ OF, dt) divgdm:—/ </ goptdivgdx> dtg/ / | Do, | dt
Q Q —00 —00 Q —00 JO

Hence for any f € BV (), write f = fT — f~ for f*, f~ >0, so

/Qfdivgdxg/g(f*—f’) divgdxg/o:o/Q|D<th|dt

taking supremum in g gives [, |[Df| < ffooo Jo | Do, | dt.

>. One first show (1.28) for f € C() continuous piecewise linear function. Let Q = vazl Q; for ; disjoint,
open where f(x) = (a;, z) + b; for a; € R", b; € R, x € Q;. Then [, [Df| = Zi\il |a;||€2]. On the other hand,
F; now has piecewise smooth boundary, so

/ Do) = Hy r(0F, N Q) = Hyoy {2 € Q4 | f(2) = t} = Hyor {2 € Q| {as, @) + b = 1)
Q;
Hence integrating w.r.t. ¢ and by change of coordinates

/ / |D<ppt|dt:/ Hooy{z € Q| las, 7) + b; = £} dt
—oo J € —o0

= a; Hn—l T € Q1 <a“ x> + bl = t d t
|a;]
oo |a] |az| |a] |a;]
= \ai|/ Hy 1 (Ql N { {a; > t}) dt
o |a;] |ai\

using Classical Coarea formula (1.27) with m =1

Q;
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hence for f € C(£2) piecewise linear, (1.28) holds

N N 00 )
/|Df\=2|ai||ﬂi\=2/ / |D¢F,,|dt:/ /|Dwt|dt
Q =1 =17 —00 Q; —oc0 JQ

Now take any f € C*°(£2), approximate using sequence of { f;} C C(Q) continuous piecewise linear functions in
WL1(Q) norm. In particular, one has

I = Sillpaey = 0 1D lpsqy = lm 1D s (1.29)

where the latter follows from || Df — ij||L1(Q) — 0 and DCT. Denoting F;; := {z € Q| f;(z) < t}, one has

#@) = Hia)l = [

— 00

(or @) = er @l dt = 1f = Fill@ = [ [ lon@ —or, @ldeit 0

hence there exists a subsequence ¢, , = ¢p, in L'(Q) a.e. t. Since (1.28) holds for each f;,

[1a1=tim [ 1Dg|=tim [ [ Der, at
Q =0 /g 70/ Ja '

o0

o 7—0 Q ’

then apply semicontinuity (1.7) for BV function

o0
> [~ [ peria
—0c0 JQ

and we conclude (1.28) for f € C*°(£2). But notice, we've really only used (1.29) in the above argument. Hence
for any f € BV (), by Theorem 1.1.2, one may choose {f;} C C*°() s.t. (1.29) holds. Then run the argument
again, we conclude (1.28) for f € BV ().

one apply Fatou w.r.t. ¢

O

To show for smooth approximation of sets, one needs Sard’s lemma for smooth boundary construction.

Lemma 1.1.5 (Sard’s Lemma). f:R" — R™ C* where k > max{n —m +1, 1}. Let

Vi
X ={xeR"|Jf(x):=]| - | (x) has rank < m}
vf’"l

denote the set of critical points of f. Then the image f(X) has Lebesgue measure 0 in R™. In particular, if
m =1, then given C* map f:R™ — R for k > n, one has

oz eR™ | f(x) <t} ={x € R"| f(z) =t} C* boundary for a.e.t € R (1.30)

Theorem 1.1.7 (Smooth approximation of Caccioppoli Set). For E C R™ bounded Caccioppoli set, there exists
E; sets with C* boundary s.t.

106, = esidr 0 [1Dos1= 1ty [ 1D, (1.31)

Proof. Let n. be positive symmetric mollifier. For E' Caccioppoli, one look at the mollification (¢g). = 1. * 0.
Since (pg)e smooth and compactly supported, indeed (¢g). € BV (R™). Observe 0 < (¢g). < 1 as inherited
from g, and denoting the set E. ; := {x € R" | (pg):(x) < t}, one has, by Coarea formula (1.28)

e = [ 1 ([1005..1) a (1.32)

But since F is bounded Caccioppoli, Corollary 1.1.1 gives o € BV (R™). One may thus apply global mollifica-

tion approximation (1.11)
1
[ 1peel = i [ 106z =i [ [1D 5.1 at
e—0 e=0 Jo
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One now aims for the following claim. One wish to show for any 0 < ¢ < 1,

1
e — dr < —MM— — d 1.
[ 10m:, = elds < e [ 1(00): — ol da (1.33)
To do so, observe

(PE)e —pE >t on EZ,\ E
vp —(pp)e 21—t  on E\ E,

Hence
/|<soE>a ~pslde = / (o5)e — 5| do +/ (o). — ol de
ES\E E\E¢,
> B\ B+ (1— ) [E\ E,| > min{l 1, 1} / ——p

which gives (1.33). By mollification, since ¢r € L'(R™) C BV(R"), |(¢g): — ¢Ell,: — 0, hence RHS of
(1.33) converges to 0 as ¢ — 0 for each ¢, implying H@E;t — cpEHLl — 0 for each t. But since E bounded,

E¢, ={x | (pE): >t} is also bounded for any 0 < ¢ < 1. And because OE¢, = {x | (pg). = t} is smooth, from
example 1.1.2, one has pp:, € BV(R™). Hence for 0 < t < 1, one has semicontinuity (1.7)

liminf/|D<pEc |Z/|D<pE|
e—0 et

But because suppDyge, C DES,, under total variation, one has [ [Dyge | = [[Dgg, ,|. So

€

1
[ 1peel =t [ 106 =i [ [1D 5.1 at
e—0 e—0 0
By Fatou w.r.t. ¢
1 1
2/ <1iminf/|D<pE”|) dt:/ (liminf/|D<pr |> dt2/|Dg0E|
0 e—0 " 0 e—0 et

.. s
1 liminf ['|Dpge | 2 [ 1Dl
fO (llIEIL}(glff‘D(pE;t‘) dt = f|Dg0E|

liminf/|DcpEc |:/|D<pE|
e—0 et

Now one is ready to apply Sard’s lemma (1.30) to the set OEZ, = {x € R" | (pg)e = t}, resulting in smooth
boundary of E¢; for a.e. 0 <t < 1. Take one such ¢. we have obtained

now combining one must have for a.e. 0 <t <1

OE¢, smooth
HSDE;t - @E‘ =0
liminf [ [Dop: [ = [ |Den|

Take subsequence ¢; s.t. £, — 0 as j — oo and [ |Dyg| = l_irr(l)f | D% | Define E; := EZ_,. O
j— €50t 7

Remark 1.1.7. Notice E; bounded and smooth ensures ¢, C BV (R"), and E bounded Caccioppoli ensures
pr € BV(R™). Hence one may apply (1.8), so that for any A C R™ open

/ Dgp| = lim / Dgg,|
A i=0Ja

1.1.5 Isoperimetric Inequality
One shall first recall from Sobolev Space the GNS inequality as the tool from (1.19) and Poincaré Lemma

Lemma 1.1.6 (GNS Inequality). 1 < p < n. Then there exists C = C(n, p) s.t.

171, 22, gy < CNDF oy ¥ F € CHRY) (134)
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Lemma 1.1.7 (Poincaré).  C R™ open, bounded, connected. 92 Lipschitz continuous. 1 < p < oo. There
there exists C = C(n, p, Q) s.t.

o £, 1

Corollary 1.1.2. There ezxists C; = C1(n) and C2 = Ca(n) s.t.

S CIDfl ooy vV fewhr(Q) (1.35)
Lr(Q)

10, s gy < oDy ¥ F € CE(RY) (130
£ = s ) < CalDflingsy Y F € C¥(B,) (137
where f, = fBo fdy = ﬁpr fdy.

Proof. Apply (1.34) with p =1 yields (1.36). Apply (1.19) with Q@ = B,, p =1 and ¢ = -2+ gives

n—1

1f = Fol

Lt gy S O = Follwiags, = € (I = Follias,) + 1DF 2z, < C2 1Dl s

where the last inequality uses (1.35). O
One immediately has Sobolev Inequalities for BV function.
Theorem 1.1.8 (Sobolev for BV). There exists C; = C1(n) and Cy = Ca(n) s.t.

Hf”Lﬁ(]Rn) <C / |Df] vV f e BV(R") and suppf compact (1.38)

£ = Follyste, <Ca [ 1DF V5 € BV(B) (1.39)

where f, = pr fdy = ﬁpr fdy.

Proof. One mimic the proof in (1.23). For f € BV(R™) with suppf compact, by smooth approximation
Theorem 1.1.2, there exists {f;} C C§°(R"™) with uniform compact support s.t. | f; — f||L1(Rn) — 0 and

JIDf| = lim [|Dfj|dz. Now Df; is uniformly bounded in L* on R™, say by M. So one has from (1.36),
j—o0

151l s &) < ”ij”Ll(R") < C}M uniformly bounded. Since L7-T is Reflexive, a uniformly bounded

sequence in L7 has a weakly convergent subsequence by Banach Alaoglu, say f; — fo in L7771, But with
uniform compact support for f; and fo, one has f; — fy in L' by Holder. Since we already know f; — f in L',
fo = f. Now by lower semicontinuity of weak convergence

([

thus we’ve proved (1.38). For f € BV(B,), by smooth approximation Theorem 1.1.2, there exists {f;} C
C>(By) st |Ifj = fllpip,y = 0and [5 |[Df| = lim [, |Dfjldz, so [|Dfj]l ;g is uniformly bounded, and
P P j—o00 P P

n—1 n—1

o dx) < jim, </ il dm) < G lim 1Dl s any = O / =l

by (1.37), {f; — (f;),} is uniformly bounded in L#-1(B,). Hence there exists weakly convergent subsequence
fi — (f))p = fo in L#1(B,), thus since B, bounded, f; — (f;), — fo weakly in L'(B,) via Holder. But
fi—(fi)p = f—foin L', so f — f, = fo. Again by the lower semicontinuity one has (1.39)

n—1 n—1

(/ |f_fp|nnldx> ) < lim (/ |fj—(fj)p|7ﬂldx> )
B, j—o0 B

< s lim DSl s, = /B oI

P

O

Theorem 1.1.9 (Isoperimetric Inequality). For E C R™ bounded Caccioppoli, there exists C1 = Ci(n) and
Cy = Cy(n) s.t. for any open ball B, C R™ with radius p

B < ¢ [ 1Dgs) (1.40)
min{|EN B,|, |[E°NB,|}"+ < 02/ |Dog| (1.41)
BP
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Proof. Since E bounded Caccioppoli, ¢ € BV (R") and supppr = E is compact, one apply (1.38) and so

ENB
(1.40) holds. Now let f = ¢, then f, = ﬁ pr Vp = %, SO

[r-gimmao= [ peglEraes [ jf e
B, B,NE B,NE*

n

|ECN B[\ ™7 IENB,|\" T
= |B,NE| ( +|B,nE| [ ===
: Byl : Byl

ENB,|\ "1 EN B\ T
> min{|B, N E|, |B, N E°|} <1|“P|) +(|”P>
| B,| | B,

Hence taking ”T_l power gives

n—1 n—1

. B - ENB,|\ "1 ENB,\*T\ "
[ = piar) = mings,n 50 EE ((1- 550 T (B0
, B, B,

Notice for any # > 1 and a, b > 0, one has elementary inequality (a + b)? < 2° (ae + b‘g). Letting 0 = -~

n—1"?
|[ENB,| |ENB,|
a=1-— and b = ==~ so
[Bpl [Bol 7

n—1

L ENB\TT L (ENB,[\TT T > (27 1)"79,1
Ex 1B, - 2

independent of size of B,. Hence apply (1.39) one has (1.41).

O
1.2 Traces of BV Function
1.2.1 preliminary lemmas
Lemma 1.2.1 (Lebesgue Differentiation). f € L*(R"™). Then for a.e. z € R"
.1
lim —n/ [flx+y)— f(x)|dy=0 (1.42)
p=0p" B

P

One need Zorn’s lemma for a Covering argument.
Lemma 1.2.2 (Zorn’s Lemma). One needs a few definitions to make sense of Zorn’s lemma.
o A set P is partially ordered by < if

< is reflexive: © < x for any x € P
2. < is anti-symmetric: x <y and y < x implies x =y
<

3.

is transitive: <y and y < z implies x < z

Note not all elements in P are required to be comparable. If a subset S C P that inherits the partial order
< has every pair of elements comparable, S is called totally ordered.

o An element m € P with partial order < is maximal if there does not exist s € P s.t. s #m and m < s.
Note ‘maximal’ here does not need m to be comparable with all other elements in P.

o Given subset S C P that inherits the partial order <. An element u € P is an upper bound of S if for any
se s, s<u.

Zorn’s Lemma claims: Given a nonempty partially order set (P,<). If every nonempty subset S C P that
inherits the order < and is totally bounded has an upper bound u € P, then P contains at least one maximal
element m with order <.

Lemma 1.2.3 (Covering Lemma). A CR". p: A — (0,1). Then there ezists countable set {x;} C A s.t.
BP(Ii)(CEi) N Bp(zj)(l'j) =g fori#j (1.43)

AC U BSp(xi)(-Ti) (1.44)

i=1
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Proof. For k> 1,let A :={x € A| 5r < p(x) < zr=r}. One wish to define a sequence of sets L for each k. If
Ap = 9, let Ly, := @. WLOG, assume A; # @. Let L1 :={L C A1 |V, y € L, x #y, By (x)NB,y) (y) = T}.
For nonempty A;, £; is indeed nonempty because both the empty set and singletons are elements of £;. Now
order £1 with inclusion. For any subcollection of £, totally ordered with inclusion, indeed their union is element
of £1 and is upper bounded. Hence £; contains a maximal element via Zorn’s lemma, call it L;. Now assume for
Ly,--+, Ly, one obtain Ly via taking the maximal element of the following collection ordered with inclusion

Liy1:={LC A1 |Vo,y€ LiULyU---ULL UL, x #y, By (x) N\ B,y (y) = 3}

Notice @ € Ly is always true so Zorn’s lemma applies. Liy; could be empty even if Apy; is nonempty.
Moreover, for each Ly, for any M C R™ compact, M N L must contain finitely many elements otherwise
{B,(2)()}zemnL, as open cover of M N Ly, does not have finite subcover, contradicting compactness of M N Ly,.
Hence let M truncate collections of balls {Ej} with radius j € N, so each Ej N Ly, is finite for any j. Thus
pass j to oo, Ly is countable. So L := (Jy—, Li is countable set satisfying (1.43). To see (1.44), take any
z € A =Jpo; Ar. There must exist k s.t. z € Aj. Now since L, is maximal element of Ly, Ly U {z} ¢ Ly.
Hence there must exist € Ly U---U Lg s.t. @ # 2z and Bj,)(z) N B,y (2) # @. Note by definition of Ag,
7 < p(z) <z, and by definition of Ly U--- U Ly, 5 < p(z) < 1 Hence 1p(z) < p(z). But the balls

2k
Byz)(x) N B2y (2) # @, s0 2 € By (). O

Using the covering lemma, one obtains a boundary differentiation lemma analogous to Lemma 1.2.1.
e B.(z) :={z € R"| |z — z| < r} ball with center z radius r in R”
o B,(y) :={t € R""! ||y —t| < p} ball with center y radius p in R"~!
o Let R} :={z € R" |z, >0}, y € R" ! = 9R", p > 0. Upper cylinder with center y radius and height p

Cy(y) :=={(z,t) e R" 1 x (0,00) | [y — 2| < p, 0 <t < p} = B,(y) x (0, p)

Lemma 1.2.4. pu positive Radon measure on R’ with p(R%) < oo. Then for H,_i-a.e. y € R = oR",

; 1 + —
Yim = n(Cy(y) =0 (1.45)

Proof. Tt suffices to show Vk > 0, Ay := {y € R"™1 | limsgp pn%lu(C';r(y)) > 1} is of H,_1 measure zero.
p—
Given € > 0. Note for any y € Ay, there exists p, < € s.t.

1 1 .
e wC, W) > 5 <= oy < 2kp(C,(v))
Y

Choose {y;} C Ay as in Lemma 1.2.3 with p(y;) = p,, so that %pyj (y;) are disjoint and Ay C U;‘;l Bsp,, (y;)-

H,_ 1 Ak SZ '%Spy] yj))*wn 12 3py7 <Wn 13n 12kZH Py, ))

Jj=1 Jj=1

But C’;ryj (y;) = ‘%Pyj (yj) x (0, py,) are disjoint, and since p,, < ¢ uniformly in j
Hy, 1 (AR) < wn_13" 2k p{z € RY |0 <z, <e}

for any € > 0. But u(R%}) < oo, so u{z € R} |0 <z, <e} - 0ase — 0, hence H,_1(Ax) =0 Yk > 0. O

1.2.2 Existence and Property of Trace on Cp
One first work with upper cylinder C}, := CF(0) = Bg x (0, R). Also denote Cr := Br x (—R, R).

Theorem 1.2.1 (Construction of Trace). f € BV(C}). There exists f* € L'(#g) s.t. for Hy,_1-a.e. y € Bg
ti - [5G = 1)l ds =0 (1.46)
C+
and for any g € C3(Cr;R™), one has

fdivgdr = f/ (g9, Df) — frogndH,_1 (1.47)
c cf Br
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Definition 1.2.1 (Trace of BV Function). f € BV(C}). f+ € LY(%gr) in Theorem 1.2.1 is trace of f on Bg.
Indeed (1.46) implies for H,_1-a.e. y € Br

10 = B G L 7O (149

Proof. First suppose f € C’OO(C’E). Then for any 0 < ¢ < R, define f¢: Zr — R as f¢(y) := f(y, ). Hence
denoting Q./ . := Br x (¢, €) for 0 <&’ < e < R, one has from FTC

/ £ () — 1 ()] dHor () < / Dy f(y, )| dt dH 1 (y) = / D, f| de (1.49)
Br Br Je’ ’

ele

Since f smooth, RHS Cauchy in ¢ gives LHS Cauchy in ¢, thus 3 f+ € LY(%g) s.t. || f¢ — F b1 () — 0- Take

any g € C}(Cgr;R™), Since f smooth, for any 0 < ¢ < R, and let v = (v!,--- ,»™) denote unit normal w.r.t.
Br x {x, = e} and pointing downwards to R*~! ie., v = (0,---,0,—1)

/ f divgde = — / (9. Df) + /@ 99 vath)

. / (6. DJ) - / (@, €) gnly, ©) dHo1 (1)
Qe,r Brx{r,=¢c}

_ / (g, D) — / £ () 5. (v) dH 1 (1)
Q< R Br

letting e — 0, one obtain (1.47) for f smooth. To see for (1.46), for any y € Br and 0 < p < R s.t. C;f(y) C CE

zZ)— + z = g _ft 1
/C;(y)lf() fTy)ld /@p(y)/o |f(n, t) — f ()| dtdH,_1(n)

14 o +
s/%(y)/o |f(n, 1) — fT(n)| dt dH,—1( / / 1 ( (y)| dt dH,,—1(n)
@p(y) 0 ‘@ﬂ(y)

notice upon multiplying by p~", the second term goes to 0 for H,_j-a.e. y due to Lebesgue Differentiation
1.2.1. For the first term, use Fubini and mimic (1.49)

’ P
_ _ by
[ o= sataano = [ 15— s oo
P ¢
SA /%p(y)/() |an(77) f)|dden—1(77) dt
p
Df|dzd D
é/0 /Qo,t(y)| flds t<p/cj(y)| U

now multiplying by p~" and notice |Df| is Radon measure on Cg that is finite, one may use (1.45) with
= |Df]|. Hence for H,_i-a.e. y € Bg

1 1 1

L @-rwles s [ o [ - i) 0

e () P CF () B, (y)
and one concludes (1.46) for f smooth. In general for f € BV(C},), approximate using {f;} C C>(C}) via
Theorem 1.1.2. Recall remark (1.18), for any j, given n and H,_1-a.e. y € Br

1
i - [ 1) = £i(2)dz =0
P=0 0" Jek ()
Hence combining with f; satisfying (1.46)
1
L O fwlas g [ W@ - [ 156wl 20
P Jek )

for any j. Thus by uniqueness of L' limit, all traces f;‘ coincide H,,_j-a.e. y € Br. So define f+ := f;r for
any such trace. One has (1.46) for f € BV(C%). Finally, since [|f — fjll 1 o+) = 0 and [o4 [Dfi| = [+ |Df],
R R R

one wish to deduce (1.47) from

/ f; divgdz = — / lg. Dfy) — / FF gndH,_y
cf (op Br
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The first term converges due to || f — f; ||L1(C+) — 0 and the last term does not need to converge as f+ = ff for
R
any j. For the second term, note [+ |Df;| = [+ |Df| convergence ensures uniform boundedness of [+ |Df;].
R R R
By Banach Alaoglu, the closed unit ball in norm is compact in the weak* topology. Hence identifying [, o+ |Df|as
R

norm, there exists subsequence s.t. Df; = Df. But the vague topology convergence fcg (g9, Df;y — fc}g (g, Df)

is essentially the weak® topology convergence. Hence we’re done.
O

Proposition 1.2.1 (Approximation in BV implies Approximation in Trace). f € BV(C%). If {f;} € BV(C})
s.t. f; — fin LY(C}) and

i [ D= [ s (1.50)
i~ Jo ci
then
i [ |fF - S dH, 1 (y) = 0 (151)
J]—00 '%R

Proof. For any 0 < 8 < R, consider Qo g := #r x (0, ). Define fz : Br — R s.t. fg(y) := %foﬁ f(y,t)dt for
any f € BV(C}). Then for a.e. 8

[@R|f+<y>—fﬁ<y>|dHn_1<y>= / ) / £y, £) dt) dH,o_1 ()

5/ /@RW fly, D dHn1{y) dt <ﬂ/ /QOfIDflda?dK/leDfldx
(1.52)

where the last line uses (1.49), initially shown for smooth f. To make sense of (1.49) for f € BV(C}), one
precisely needs smooth approximation from Theorem 1.1.2 where || f. — f|| LY (Ch) implies for a.e. t

/ FFW) = £y Dl dHa () — [ 177 ) = f(w, )] dHa ()
Br Br

and fc* |Df.| — fc* |Df| implies via (1.8) ([, 1y [Df] = 0 for a.e. t otherwise uncountably many disjoint
summing up contradicts f € BV (C})) that fQo Df| = fQ |Df|. Hence for {f;} C BV(C}) as assumed

/@ S P () < /% S = Ul ) + / (f3)5 — fsl dH () + /@ s £ )

Br

using (1.52)

< /Q gl /@ )5~ fol B () + /Q _Ios

the middle term writes, using || f; — f”Ll(Cj;) -0

1
[, 1005 = fal -/ [ 1800 = st laH o de =5 [ 15~ flde o

R

Thus, since for a.e. 8, [, |Dfj| = [, ,|Dfl, one has
tmsup [ | < 7t dH, @ <2 [ DS
j—moo JBR Qo, s

for a.e. 3. Thus using f € BV (C}) so Df| — 0as 8 — 0, one arrives at (1.51). O
R Qo, 8

Note for Cp := Bpr x (—R,0), one may similarly define f~ € L'(%g) as trace for the function f € BV (Cy)
via Theorem 1.2.1.

Proposition 1.2.2 (Extension Property for BV). For f; € BV(C}) and fo € BV(CR), let f*, f~ € LY (%g)

o
be their trace respectively. Then for f : Cr = Br x (—R, R) — R defined as f := {? iz g’f, one has
2 R

f € BV(CRr) and
[ it =il = o (1.53
551{ ggR
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Proof. Note from (1.47) applied to f; and f; respectively, one has for any g € C3(Cg;R™)

/ fidivgde = — / (0. Df) — [ £ gudH, s
oy o Br

fadivgdx = —/ (9, Df2) + [T gndHy_y

Cn Cr Br

Notice on C, while deriving (1.47) for smooth f, one take unit normal v = (0,---,0,1) pointing upwards to
R™ 1. Hence the last term involving g,, has opposite signs. One take sum of the above to obtain

faivgds =~ [ (0. DR) = [ (o.Df) = [ (= ) gy (1.54)

Cr cf Cy Br

Now if require |g| < 1, one has

|/ fdivgdx\é/ IDf1|+/ IDf2|+/ |f+|dHn71+/ | dHo_y < o0
Cr cl Ccr Br Br

Hence f € BV (Cg). But on the other hand, by definition of distributional gradient D f

pavgdz=— [ 0. 0f == [ 0.0 [ 005~ [ t0.05)

Cr =

Notice f coincides with f; and f5 respectively on C’E and CF, hence

[ aivgas = - /C 9.D5) - /C 0.8 - /@ 0.00) (1.55)

Now combining (1.54) and (1.55) gives

/@R(ﬁ—f—)gndHnl:/ (0. Df)

Br
SO
[ pfi= sw o[ ppi= sw [ (gt = [ 15l dH
Br QGC(%(CR;R") Br gec(%(CR;R”) Br Br
lgl<1 lg|<1
where the last equality holds by Riesz Representation. Hence we're done with (1.53). O

1.2.3 Trace on Lipschitz Domains

One has systematic tools to reduce a Domain to Cg. Let @ C R™ open with 992 Lipschitz.

e Since 9 Lipschitz, for any zg € 012, there exists a neighborhood around xg s.t. the intersection of 92

and the neighborhood is locally the graph of a Lipschitz function. Due to topology in R"™, one is in fact
free to choose the neighborhood as simple geometric objects. Via translation, one may first put =g = 0
as the origin, then rotate 9 so that one may choose a cylinder C(R) = Bgr x (—£&, £) with #g radius

R
R > 0 and height g, as well as a local Lipschitz function w : Zp C R"7! — (—2%, 2§) where the local
boundary and interior writes
UNC(R) = (v, 1) € O(R) = By x (—2, ) [ 1 = w(y)) (1.56)
QNCR)={(y, t) e C(R) |t >w(y)} (1.57)
e One may further flatten out the local boundary by introducing the variables

(v, ) = (v, t —w(y) € C = Zr x (0, R)

hence for f € BV (2N C(R)), one may further define for g € BV (C},) via
9(y, 7)== fy, wly) +7) = f(y, 1) (1.58)

e Apply Theorem 1.2.1 to g € BV(C},), there exists trace g* € L*(%r). One define f* € L*(0Q N C(R))

for f € BV(Q2N C(R)) as the trace on local Lipschitz boundary via

Fy, w(y) == g*(y) (1.59)
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Theorem 1.2.2 (Construction of Trace). € C R™ open and bounded with 02 Lipschitz. f € BV (Q). Then
there exists trace p € LY(9RQ) s.t. for H,_1-a.e. x € O

lim — /Bp(z)mﬂ |[f(z) —p(x)|dz=0 (1.60)

And for any g € CL(R™;R™) one has, denoting v outer unit normal w.r.t. O

| raivgas == [0+ [ otovpam,, (1.61)

Proof. For  C R™ bounded, 99 is compact. Hence consider open cover {Cy(R)}zcoo where C,(R) is the
cylinder s.t. upon translation and rotation, (1.56) and (1.57) holds for « positioned at the origin. There exists
finite subcover {Cy,(R;)}Y,. Given f € BV(Q), upon defining local trace f;" € LY(9Q N Cy,(R;)) for each
/I Co,(Ry) B in (1.59), one observe that on their overlaps they must agree H, _i-a.e. due to uniqueness of L'
limit. Hence p(z) := f;F(x) for i s.t. o € Cy, (R;) is a well-defined L' (02) function. Note for any = € 92, and
for i s.t. € Cy,(R;), there exists p < &t sit. B,(z) C Cy, (R;). Hence (1.60) follows directly from (1.46) as
a local behavior. To derive (1.61), one needs partition of unity. Denote T'; := Cy,(R;) for ¢ > 1 and I’y CC §2
chosen s.t. 2 C vazo [; is open cover. One may choose a smooth partition of unity subordinate to {I';}2 s.t.

N
0<¢; <1, suppg; C I';, qui:linﬁ
i=0

Hence f = Zf\io fo; in Q and p = vazl w@; on 0f) since I'y CC Q. By definition of distributional derivative
D(f¢o) € D" and that suppfpg C Ty CC Q, for any g € C}(R"™; R")

[ ronivgds = [ ondivgdo == [to. Dison)) = = [ (0. DUson) (1.62)
while for i = 1,---, N, one apply flattening boundary and then (1.47) on each C’Ei to obtain
[ sordivgds == [ (g, Do) + [ porlg. v) i (163)
Q Q 99
Hence summing up (1.62) and (1.63) gives (1.61). O

Proposition 1.2.3 (Approximation in BV implies Approximation in Trace). @ C R™ open and bounded, 0S
Lipschitz. f € BV(Q). If {f;} € BV(Q) s.t. f; — f in L'(Q) and

Jim [ 1051 = [ 1pr] (1.64)

then, letting @; be trace for f; and ¢ trace for f

lim loj —¢|dHp—1 =0 (1.65)

j—o0 Joq
Remark 1.2.1. Let Q C R™ open and bounded, O Lipschitz. f € BV (Q).

e By smooth approzimation Theorem 1.1.2, there exists {f;} C C*(Q) s.t. ||f; = fllgi@) = 0 and
111110 Jo|Dfjlde = [ |Df|. As in Proposition 1.2.1, or essentially (1.18), letting ¢; be trace for f; and ¢
J1—

trace for f, one has p; = ¢ for any j.

o Let A CC Q) open with A Lipschitz. Then f|, € BV(A) and f|Q\Z’ hence denote fy, f1 € L*(0A) as
their trace respectively.

1. One has immediately via differentiation (1.60) that for H,_1-a.e. x € 0A

i [ fG) - f@lde =0l ()~ fi@)dz=0  (1.66)
B,(z)NA

p—0 p" /Bp(x)ﬁ(Q\A)

2. Via Extension property for BV Proposition 1.2.2, denoting v as outer unit normal w.r.t. A, one
has important characterisation for the measures |Df| and Df on 0A

/ Df| = / £ frldHa () (1.67)

OA A

[ pi=[ (15 £3) vitaw) (168)
OA OA
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In particular, let @ = Bg and A = B, for p < R, and denote f,, f;r € LY(8B,) as trace for f|Bp and
f‘BR\Ep respectively. One has, for some N1, Ny C R set measure 0

Jim |f(tx) — £, (px)|dHp—1(x) =0 lim |f(tz) — f (px)| dHp—1 () = O (1.69)
tzﬁl 981 tfngQ 0B

Proof. 1t suffices to prove for f;". Notice, by a change of variables, for any E<t<p
/| \f(tx)—f;<px>|dHn,l<x>=—/ — fy @)l 1)

(—tn /aB /Bz(p @B, |f(2) = f, (@) dz Hp 1 (2)

where the last inequality holds for a.e. t. Denote the set that it fails by N;. Now since f € L'(Bg), one
may apply DCT and use the inner part of (1.66)

imswp [ 1f(t2) — 17 (po)| dHy 1 (2) < iy = [ . = g O @z (@)

t—p— t—p— 4 - t)n
tg Ny tg Ny
1 . 1 _
< — lim ——— |f(z) = f, ()| dz | Hp-1(z)
p* Jop, \t=e= (0= 1)" JB,,_, ()nB,
t¢ Ny
=0

O

Also, since f € BV(Q), |Df| is of finite measure. Due to countable additivity of measure for |Df|, for
a.e. p, one has [y, |Df] =0, hence

fi(x) = flx) = f, (x) for H,_y — a.e. x € OB, for a.e. p (1.70)

o Let A C Q open with QA Lipschitz, and f € BV (A). One may extend f to Q by F := {g m”;{ilAhence

denoting Fy, Ff € LY(0A) as trace for F|,, Flo\a, one has Fy = f as trace of f on OA, and Fi=o.

1. from (1.67)

[pri= [psi= [ pri= [ |3l (1.71)
Q A QoA QoA
2. from (1.68), denoting v as inner unit normal w.r.t. A
/DF—/ Df:/ DF:/ FrvdH, (1.72)
Q A QoA QoA

In particular, one may further compute 3 perimeters for subsets of Caccioppoli set w.r.t. some ball. Let
Q= Bgr and A= B, for p < R, and f = pg for E CR" Caccioppoli. Then F' = ppnp,. Due to (1.70),
fora.e. p, o =g, for Hy1-a.e. © € 0B,. Note 0B, N Br = 0B,, so
1. from (1.71)
P(ENB,, Br)=P(E, B,)+ H,_1(ENJB,) for a.e. p s.t. (1.70) holds (1.73)

2. similarily, from (1.72), denoting v as inner unit normal w.r.t. 0B,

Dygpnp, :/ Dyg +/ ppvdH, 1 for a.e. p s.t. (1.70) holds (1.74)
Br B, o8,

Now let A= Br\ B,, then F = PCEA(BR\B,): 50 for a.e. p, pp = @Ew for Hy,_1-a.e. x € 0B,

P(E\ B,, Br) = P(E, B\ B,) + H,—1(ENdB,) for a.e. p s.t. (1.70) holds (1.75)



1.2. TRACES OF BV FUNCTION 19

Furthermore for A as above, Bg\ (EN(Br\ B,)) = (BrR\ E)N(Br\ B,), then using that mutual disjoint
sets share same perimeter

P((Br\ E)N(Br\ B,), Br) = P(EN (Br\ B,), Br) = P(E\ B,, Br)
one has, again by mutual disjoint sets sharing same perimeter

P(EUB,, Bg) = P(Bg \ (EUB,), Br) = P((Br \ E) " (Br \ B,), Br) = P(E'\ B,, Br)
= P(E, BR\ B,) + H,_1(EN9B,) for a.e. p st. (1.70) holds (1.76)

Hence one may measure perimeter of subsets for E in big ball using perimeter of E in small balls and the
boundary quantity H,_1(E N 0B,) via (1.73), (1.75) and (1.76).

1.2.4 Converse to Trace Construction

Theorem 1.2.3 (Converse to Trace Construction). Let ¢ € L'(%g) for R > 0 and compactly supported. For
any € > 0, there exists f € WHL(CR) s.t. ¢ is trace of f and

[ e e [ el (1.77)
ch Br

[ ipntde< s [ jpldt,y (1.78)
CE Br

Proof. There exists {;} C C(ZR) s.t. l9; — @l 1,y — 0 With 0o =0, [l0;ll11(s,) < 219l 11 (5, and

i €
/@ 05— il dH, oy <2797 (145) / il dH, 1 = Zn% liram < (14 5) 19l
LR (5

Now one may construct f with support on neighborhood of #gr. Let {tx} C (0, R) be strictly decreasing
sequence to 0. Define f : C}; — R s.t. for z € Bp, t € (0,R)

f(z, 1) == { t—tiia 0 _ if t>1o

ot er(@) + 5t tk+l(pk+1( x) if ty >t > tgyq for k>0

Hence one may calculate for any t; > ¢ > ¢4 for k>0
|Dif| < |Digk(z)| + |Digr+1(x)] 1<i<n-—1

1
Do f| < ———len(x) = pria ()|
le =t

Hence one calculate [+ |f|dz and [+ [Df|dz s.t.
R R

/Ifldfv—// (] A1 () dt = Z/tkﬂ/%lfldﬂn—l(x)dt

oo
< Z ||<Pk||L1(gaR) + ||80k+1HL1(gaR)) dt = Z <||%0k\|L1(.@R) + H‘PHI”U(@R)) (tk = trt1)

tk+1 k=0

< 4ol (am Z te = tir1) = 4to @l L1 ()

/ |Df|dx—Z/:;/ |Df| dH,_( dt<2/tk Z/ |D; f| dH,_y (z) dt

tet1 =1

) 1
< Z / (Z (1wl 1 sy + I Dirrtll 1y ) + T—7—
k=0" th+1 o

. ||<Pk—<Pk+1L1(@R)> dt
=1

<> ((IDeklzs gy + 1Dk s g ) (e = trr1) + ok = Pl sy

ol
I
o

Mg

€
(1Dl 1y + 1Dk 1y ) (Er = trsn) + (14 5) 10l 22

bl
Il
=)
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But one is left to choose t, freely. Hence choose t; s.t. 4tg < € and for £ >0

2—k‘—2

€||90||L1(@ )
(tk — ths1) < TS
L+ Dokl gy + 1Dkl 11 ()

Hence one obtain (1.77) and (1.78), whence f € WH1(C}). To see ¢ really is trace for f, denote fi(z) := f(z,t)
and compute for ty >t > tyy1, following construction in Theorem 1.2.1 and DCT

| @ -e@ldtna@ < [ 1T g )l B @ |1 g (o) o) dHoa (o) 0
Br Br 'k k+1 Br Lk k+1

Hence by uniqueness of L! limits, ¢ is indeed trace for f.
O

Theorem 1.2.4 (Converse to Trace Construction). Q C R™ open bounded, OQ Lipschitz. ¢ € L*(9). Then
for any € > 0, there exists f € WH(Q) s.t. ¢ is trace of f and

[isiae e [ jolan,y (1.79)
Q o0
[pslar<af jelam, . (1.80)
Q o0

for A = A(0Q) but independent of f, ¢, €. If moreover 9§ is C, one may choose A = (1+¢). Also, f may be
taken to be supported on arbitrary small neighborhood of OS2 by controlling ty via €.



Chapter 2

Reduced Boundary

2.1 Construction and Properties
As a preliminary, one finds substitution for general Borel sets so that their measure theoretic boundary and
topological boundary agree. We work with sets satisfying Lemma 2.1.1 from later on.
Lemma 2.1.1. Let E C R Borel. Then there exists E Borel s.t. |EAE| = 0 differ by Lebesgue measure 0 and
0 < |ENB,(x)| <wnp™ for any p>0and x € OE (2.1)

Proof. Define

Ey:={x € R" | there exists p >0 s.t. |[EN B,(x)| =0}

Ey :={x € R"| there exists p >0 s.t. |[ENB,(x)| = |B,(z)| = w,p™}

One see both Ey and E; are open. For x € Ey, take p > 0 s.t. |E N B,(z)] = 0. Then for any y € B,(x),
let po :== p — |z —y|, so Bp,(y) C By(x) hence |E N B,,(y)| = 0. Due to existence of pg, y € Ey, i.e., the
neighborhood B,(x) C Ey. So Ep open. For x € Ej, there exists p > 0 s.t. |EN B,(z)| = |B,(z)], ie.,
|By(x) N E°| = 0. Again, for any y € B,(z), let po := p — |z — y|, so B,,(y) C B,(x), thus |B,,(y) N E¢| = 0.
Hence y € Ey, we have B,(xz) C Ei, so E; is open. One may further show that |Ey N E| = 0. Since for any
x € Ep, one may choose p, s.t. |[EN B, (z)| =0, and it indeed covers Ey C U,cp, Bp. (), we may choose
sequence {z;} C Ey as index for covering. One compute, due to |Bp1~j (x;) N E| =0 for any j

Eon Bl < || By, (2))NE| <3 |B,, ()N E[ =0
j=1 j=1

Similarly, |Ey \ E| = 0 by replacing E in above computation with £°. Since Ey, E; open, E:=(EUE))\ Eo
is Borel. And indeed one has |[EAE| = 0 via the following

|E\E|:|Em((EUE1)\EO)C|:|Em((EuE1)CuEO)\:\(EmEcmEf)U(EmEoﬂ:|EoﬂE|:0
|E\E|:|(EUE1)ﬁE8ﬂEC|:|(EﬂE§ﬂEC)U(E10E§ﬂEC)|§|E1\E|:O

Now for any z € OE, since Ey, E1 open, = ¢ Eyg U E;. Hence for any p > 0, (2.1) holds. O

2.1.1 Reduced Boundary and Uniform Density Estimate
Definition 2.1.1 (Reduced Boundary). Given E C R™ Caccioppoli. x € 0*E reduced boundary if

/ |Dog| >0 for any p>0 (2.2)
Bn(z)
and hence, defining
f Dyp
V() = Bel) " T for any p>0 (2.3)
pr(x) ‘DQPE|
One require the limits lir% v(z) exists and has length 1
p—
o Dyr
v(z) := lim v(z) = lim % (2.4)
p—0 p—0 pr(x) | Dyl
w(z)l =1 (2.5)

i.e., O*FE :={x € OF | (2.2) holds for any p > 0, and the limiting object (2.3) satisfies (2.4) and (2.5)}

21
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Recall the Lebesgue-Besicovitch differentiation.

Lemma 2.1.2 (Lebesgue-Besicovitch differentiation). u1, pe Borel measures on R™, then

B
D, p1 = lim 1 (By(@))
p=0 pa(By(2))
is defined pz-a.e. on R™, and D,y € L}, (R™, p2). If furthermore, py < g, i.e., pu1 is absolutely continuous
w.T.t. po in the sense that pe(E) = 0 implies py(E) for any E C R™ Borel, then we write

p1 = Dy, pq - p2 on all Borel sets

Remark 2.1.1. Note Dyg is indeed absolutely continuous w.r.t. |Dyg|. Hence apply Lemma 2.1.2, one has

s (@) DPE
v(z) = lim ———— exists and |v(x)| =1 |Dog| —a.e. z € R" (2.6)
=0 [, () D95
and the following measures agree
Dyg =v|Dyg| on all Borel sets (2.7)

Example 2.1.1. One has 2 examples. One for smooth boundary and one for Lipschitz.

e Let E CR" be bounded, Caccioppoli with C? boundary OF. Then 0*E = OF.

Proof. Let A= F and f = ¢g in (1.68), one has via Extension property for o5 € BV (R™) that
Dypg =vdH,_1 on OF

where v denote inner unit normal w.r.t. 9FE. And because suppDypgr C OF, one writes for any p > 0

/ Dpp — / vdH,
B,(x) B,(z)NOE

while C? boundary ensure via (1.4) that
/ |D<PE| = Hn—l(Bp(l') N 6E)
BP(Z)

hence one has explicit formula for v,

B pr(w)m’?E vdHp 1
B Hn_l(Bp(.’L‘) N 8E)

v,(z) for any x € OFE

Since v € C*(OE;R"), differentiation gives lirr(l] vp(z) = v(x) for any € OF. Hence |v| = 1 as inherited.
p—
O

e Let E=(0,1) x (0,1) C R2. Notice except for the four corners, the boundaries are piecewise C*, hence
these parts belong to O*E. Now for any corner x, one may compute

p=0 pr(x) Dol V2

Hence the four corners do not belong to 0*E.

One has Uniform Density estimates, which says bounded oscillation in normal directions at a given boundary
point x € JF prevents densities of E and E° from disappearing under blow-up limit. In particular, if z € 0*F,
it indeed satisfies our assumption, so uniform density estimate holds. For simplicity, let 0 € OF via translation.

Theorem 2.1.1 (Uniform Density Estimates). E C R™ be Caccioppoli and 0 € OF. If there exists pg > 0 and
q > 0 constants s.t. for any p < po

/|D¢E\>O
BP
Jz, D
v,(0)| = £ >qg>0 2.8
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Then for any p < pg, one has uniform estimates on the density

|E N B,| >

E°‘NB
| 7;1 o > Cs(n, q) >0 (2.10)
Do)
0 < Cs(n, q) < fBPpn_l < Cy(n, q) <0 (2.11)

for constants C1, Co, C3, Cy only relevant to n, q.

Proof. Since E Caccioppoli, ¢ € BV (B,,). Denoting v as inner unit normal w.r.t. 9B, one has via (1.74)
/D@EQBP = / Dyg +/ ppvdH, 1 for a.e. p < pgy
B, oB,

evaluate the vector-valued measure on some constant unit vector e € S*~! gives, for p s.t. (1.74) holds

0= 7/div(6) PENB, :/<6, D‘PEOBK) :/ <6, DcpE>+/ (pEI/~€dHn—1
17}

B, B,

Hence for any e € S*~!

| e Der)

P

= / ppv-edH, 1| < / vpdH,_1=H, 1(ENJB,) < Ccpnt
dB, B,

taking supremum on LHS and using Riesz Representation yields

/ Deyp
B

P

< H,_(EN3B,) (2.12)

Using (2.12) and (2.8) further gives

J

Now using continuity from above of the measure |Dyg|, we conclude the second part to (2.11) for all p < po.
Now, using (1.73) and similar reasons as above, one has

1
|Dyg| < p |/ Dop| < Cyp™™t  for a.e. p < py s.t. (1.74) holds

B,

P

P(ENB,)=P(E,B,) + H,_1(ENJB,) forae. p<py

1
B oB q dB,

3 P

Since E N B, is bounded Caccioppoli, via isoperimetric inequality (1.40) and noting P(E N B,) = [ |[Dygnsg, |

n—1

< (; + 1) C(n) /é)Bp ppdH, 1 (2.13)

|EN B,

for some C(n) from (1.40). Notice by coarea formula, denoting g(p) = |E N B,)|

R
4(R) = |EN Bxl =/ godezf / op dH, 1 dp — g’(p>=/ o dHn 1
Br o Jos, B,

Hence (2.13) writes

n

n—1 1 1 1 1 ENB
glp) = < <+1) Cln)g'(p) = p< ( +1> C(n)ng(p)m = = n 2
q q Cn)n (g + 1) p
denoting C; := <C(n)nl(1+1)) and using continuity from below of the measure |[E N B,| in p, one conclude

(2.9) for every p < po. Note for B¢, Dope = —Dyg due to for any g € C3(R";R")

[0 Dese) == [op-aivtgyds =~ [(1-epyaivigyas = [epaivig)ar =~ [(9. Dor)



24 CHAPTER 2. REDUCED BOUNDARY

whence |Dyg| = |Dyge| and the above same argument runs with Co = C1, resulting in (2.10). To see first part
0 (2.11), notice from (2.9) and (2.10), one has

n—1
Cip" <min{|EN B,|, |[ENB,|} = C;" p" ' <min{|ENB,|, |[E°NB

Hence applying Poincaré inequality (1.41) one has, for some C(n) > 0

n—1 ~

T o1
C;7 < Co) [ 1Dgrl — 0< cl(m < [ 1Dl

define C3 := /) yields the first part of (2.11). O

oy
2.1.2 Blow-up Limit
One define the tangent plane and half spaces for given z € 9*E (hence v(z) is well-defined and |v(z)| = 1)
e Tanget Hyperplane to 0*E at z is T(z) := {x € R™ | (v(2), x — z) = 0}
e Half spaces to 0*E at z on the same and opposite side with v(z) are respectively

TH(2) :=={x e R" | (v(2), z — 2) > 0}
T (z) ={z e R" | (v(2), z — 2) < 0}

One may now show that the blowup limit of a point in reduced boundary actually converges to the half space
on the same side as the outer normal. For simplicity, via translation and rotation, one assume 0 € 0*E, and
the outer normal v(0) is parallel to the zj-axis that points towards —oo. One wish to obtain the limit 7" (0).

Theorem 2.1.2 (Blow-up Limit of Reduced Boundary). E C R™ Caccioppoli. 0 € 0*E withv(0) = (-1, 0,---, 0).
For any t > 0, define the set for blowup

E,:={xeR"|tx € E} (2.14)

Then there exists a subsequence t; — 0% s.t. E; := E;, — T :=T%(0) in L]

Le(R™) sense. Moreover, for every
open set A CR™ s.t. H,_1(0ANT(0)) =0

Jimy / Dpg,| = / Dgrs| = Hu_y (T(0) N A) (2.15)

Proof. One wish to extract a convergent subsequence using compactness argument. First note in our setting,
the targeting limit is 7+ = {x € R" | ; < 0}. Fix p > 0. Now by change of variables, for any g € C§(B,;R"),
write g(z) := g(x/t)

[ (0. Do) = - [ diviga) er(o)de = [ div(glta)) op(ts) o
B, B, B,
. 1 ..
— [ tdiv(@)tn) ep(ta)do = [ dv@)w) ) dy
B, B,
1 - 1
= m/ (g, Dop) = / Dyg, = 7_1/ Dyg (2.16)
3 Bi, B, "= Jg,,
And by considering total variation, one has
1
|Dyp,| = pros |Dyg| (2.17)
Bp Btp

With tools (2.16) and (2.17), one proceeds in two directions. First, making use of 0 € 0*E, in particular (2.4)

I, D1¢E, ~1

1 IBP DQSOEt fB D@Et . thp V(O) — 0 (218)

1i
0 [, Do, : ~E T, Denl b Ty, |DsaE\

pr DyyE, 0
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Second, one make an immediate observation that for each p > 0, {¢g, }+ C BV (B,) because E is Caccioppoli,
and for each ¢, By, is bounded, hence ¢ € BV (B;,) and RHS of (2.17) is bounded. Again, since 0 € 0*E, one
has uniform density estimate. Applying second part of (2.11), together with (2.17) yields

. . 1
hmsup/ |Dyg,| = hmsuptn—_lf |Dop| < C < o0 (2.19)
t—0 B:

t—0 B, o

Hence the sequence of functions {¢g,} is uniformly bounded in BV( ,) norm for each p > 0. Thus by
compactness theorem 1.1.4, there exists a subsequence {¢g,} where E; := E;, s.t. ¢p, — f in L} (R™) (by
unique limit on each ball B,) and that f € BV(R"). Since f is L* limlt of characterlstlc functions, f = ¢¢
for some Borel set C C R™. Since pc € BV (R™), indeed C is Caccioppoli. Moreover, by De La Vallée Poussin
Theorem, for a.e. ps.t. [, 0B, |Dyc| = 0, one has approximation in vector-valued radon measure

lim/ Dyg, :/ Doc (2.20)
t;—0 Bp BP

hence combining with (2.18) gives, for the x; direction

tlga() 5, |Dog,| = —%1210 /Bp Dipp, = — 5 Dypc
Now since g, — ¢c in Lj,.(R™), by semicontinuity 1.1.1
/ [Dpc| < lim / Do, | = f/ Dipc (2.21)
Bp tj—>0 Bp ; Bp

but since any other [, Dijpc = 0 for i > 2 as in (2.18), the equality in (2.21) holds. Now by Lebesgue-
Besicovitch Differentiation 2.1.2

Diyc
Dypc = | lim fB”i |Doc| = —|Dec| on all Borel sets
t=0 pr |Doc|
-1
I, Dec 0
Dyc = }1_% T |D<p | |Doc| = |Doc| on all Borel sets
0

Hence D;poc = 0 as Borel measure for 7 > 2. Therefore ¢c depends only on z1 and Dipc < 0 implies ¢¢ is
non-increasing in z1. Thus C' = {z € R" | z; < A} a.e. for some A € R. One wish to determine A. Suppose
A <0, then we may construct ball B|| around 0 that does not intersect C, so using ¢p, = ¢ in L}, (R™)

O:|COB‘>\||:/ vo(x)dr = lim ¢p, (r)dr
Bia|

tjA)O BlM
ti = [ eplta)dite) = tim o [ ps()d
= lim — vp(t;z r) = lim — ve(y)dy
;=07 ), ’ t—0 1 Bl
E N By,
i EOBRl 6o
tj*}O n
J
for some C; from (2.9), contradicting our assumption. If A > 0, use
0 =[C°N By :/ poe(r)dr = lim vge(z) dz
B L0 By
1 E°N By,
= lim — wre(y)dy = llmw202>0
t;—0 tj Bjap, t;—0 tj

for some Cy from (2.10). Hence A = 0, and so C = T" = {z € R" | 1 < 0} a.e. It remains to show for any
open set A CR" s.t. Hp,_1(0AN T( )) = 0, (2.15) holds. First note that, since T has smooth boundary, one
use remark 1.1.1 so that |Dorp+| = 1|_8T+ = H,_1.T(0) as Borel measures. So if H,_1(0ANT(0)) =0 for
some A open, in fact [, , [Dpr+| = O But this is condition for (1.8) where the equality in semicontinuity holds
in subdomains. Hence apply (1.8), one directly arrives at (2.15).

O
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Corollary 2.1.1 (Density Estimates on single side of Tangent Plane to Reduced Boundary). Let £ C R™

Caccioppoli, and 0 € 0*E with v(0) = (=1, 0,---, 0). Then the volumne density on single side vanishes
1
lim —|ENB,NT"|=0 (2.22)
p—0 p™
1
. - + _
;I_IE(I) o (B,L\E)NT"| =0 (2.23)

and for any p, € > 0, denoting
Sy =B,N{x eR" | [(1(0), z)| <ep} = B,N{x € R" | |z1] < ep}

the perimeter density takes up constant portion for any e > 0

/ Dipp| = wn s (2.24)
S

Py e

lim
p_)O pnfl

where wy,_1 is volumne of n — 1-dim unit ball.

Proof. Under definition (2.14), T,/ = T" and T, = T~ for any p > 0. By change of variables as in (2.16)

1 1
pfn\EﬂBpﬂT |:p7/ wE(x)wa(w)d:c:/B or(py) er-(py) dy
1

P

= /B v, () er; (y)dy = [E,N B NT"|
1

pinqu \E) T = pi / e (1) o () do = /B elov) e o) dy

P

— [ or) e @)y = B\ BT
B
But from Theorem 2.1.2, E, — T in L}, (R") up to a subsequence, hence

hm—|EﬁB nNT- |—11m|E NBINT |=|TTNBNT"|=0
p—>0p

1
2 o + + H
lim (B, \ E)1T¥| = lim |(B1 \ E) 17| = (B \ T+ NT*| =0

s0 (2.22) and (2.23) hold. Moreover, by the exact same procedure with S, . in place of B, and S; . in place of

Bj as in (2.16), one has
1
[ 1esl= [ Des,|
p Sp, e S1,e

P

and since Si . is open set with H,_1(0S1, NT) = 0, apply (2.15) to conclude (2.24)

/ ‘D@E| = hm/ |D<PEp‘ == Hn—l(Tm Sl,e) = Wn—1
S p—0 Sy .

Py e

lim
p—)Op” 1

2.2 Regularity of Reduced Boundary

The purpose of this section is to argue that for £ C R™ Caccioppoli
e 0*FE is countable union of C'* hypersurfaces up to set of | Dyg|-measure zero.
e 0*F is dense in OF.
o [o|Dyp|=H,_1(0*ENQ) so |Dygp| = H,_1.0*E as Radon measures.

One shall first recall the precise definition for Hausdorff measure.

Definition 2.2.1. Let ACR", 0 <k < oo and 0 < § < oco. We define the k-dim Hausdorff outer measure at
step

H{(A) 1nf Zdlam ¥ AC U S;, diam(S;) <4 Vj (2.25)
j=1

and consequently define
Hi(A) :=lim H)(A) = sup H}(A)
6—0 0<6<o0

as k-dim Hausdorff measure. Here wy :=T'(3)¥/T'(& +1) for k > 0 is measure of unit ball in R*.
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Lemma 2.2.1 (Ratio Estimate). E C R™ Caccioppoli. B C 0*E. Then
Hoa(B) <23 [ |Del (2.26)
B

Proof. Since |Dyg| is Radon measure on R™, it can be approximated from the outside by open sets. Given B,
for any n > 0, there exists B C A open s.t.

/|D¢E\§/ Dol +n (2.27)
A B

Moreover, for any € > 0, apply (2.24) to arbitrary z € B, there exists 0 < p(z) < € s.t.

1
Buo(@) A and [ Dppl 2 Sp() e (2.28)
B

p(x) (:E)
One think about covering B using balls {B,(,)(z)} via lemma 1.2.3. So there exists {z;} C B s.t.
B C U B3z, () and By (%) N By, (xj) = @ for i #j
i=1
and (2.28) holds for each z;. Hence one may bound, using B,(,,)(z;) C A and disjoint, and then (2.27)
00 n—1

> 2 2.3
Bplz)t <3 a2 / Dyp| < / Dyl
Z ; wnfl B wnfl A

i=1 p(;) (%)

2.37171
< — (/ |DS0E|+77>
w B

Hence recalling (2.25), since B C (J;2; Bsp(z;)(®i) with p(x;) < € universal bound in 4

o0

Hy_((B) < lim "=t inf {2(2 Bp(z))" | plas) < a} <2.3nt (/B | Dyl +77)

e—0 2n—1 ;
i=1

take n — 0 to conclude (2.26). O
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