[Giusti] Minimial Surfaces and Functions of Bounded Variation

Mark Ma

September 3, 2024

Contents

1	Fun	ctions	of Bounded Variation	1		
	1.1	.1 Functions of Bounded Variation and Caccioppoli Sets				
		1.1.1	Definitions and Semicontinuity	1		
		1.1.2	Approximation by smooth functions	3		
		1.1.3	Compactness Theorem and Existence of Minimizing Caccioppoli sets	6		
		1.1.4	Coarea formula and Smooth Approximation of Caccioppolis sets	8		
		1.1.5	Isoperimetric Inequality	10		
	1.2	Traces	of BV Function	12		
		1.2.1	preliminary lemmas	12		
		1.2.2	Existence and Property of Trace on C_R	13		
		1.2.3	Trace on Lipschitz Domains	16		
		1.2.4	Converse to Trace Construction			
2	Rec	luced 1	Boundary	21		
	2.1	Const	ruction and Properties	21		
		2.1.1				
		2.1.2	Blow-up Limit			
	2.2	Regula	arity of Reduced Boundary			

Chapter 1

Functions of Bounded Variation

1.1 Functions of Bounded Variation and Caccioppoli Sets

1.1.1 Definitions and Semicontinuity

Definition 1.1.1 (BV Functions). Let $\Omega \subset \mathbb{R}^n$ be open set. $f \in L^1(\Omega)$.

$$\int_{\Omega} |Df| := \sup \{ \int_{\Omega} f \operatorname{div} g \, dx \mid g \in C_0^1(\Omega; \mathbb{R}^n), |g(x)| \le 1 \}$$
(1.1)

 $f \in BV(\Omega)$ if $\int_{\Omega} |Df| < \infty$. $BV(\Omega)$ is space of $L^1(\Omega)$ functions of bounded variation in Ω .

Example 1.1.1. If $f \in C^1(\Omega)$, $\int_{\Omega} |Df| = \int_{\Omega} |\nabla f| dx$ where $\nabla f \in C(\Omega; \mathbb{R}^n)$ is classical gradient. If $f \in W^{1,1}(\Omega)$, $\int_{\Omega} |Df| = \int_{\Omega} |\nabla f| dx$ where $\nabla f \in L^1(\Omega; \mathbb{R}^n)$ is weak gradient.

Example 1.1.2. We study $\varphi_E(x) = \begin{cases} 1 & x \in E \\ 0 & x \in \mathbb{R}^n \setminus E \end{cases}$ characteristic on E with C^2 boundary.

• If E is bounded, $\|\varphi_E\|_{L^1(\Omega)} = |E \cap \Omega| < \infty$ so $\varphi_E \in L^1(\Omega)$. But $\nabla \varphi_E$ distributional derivative is vector-valued Radon measure instead of $L^1(\Omega)$ function, hence $\varphi_E \notin W^{1,1}(\Omega)$. But on the other hand, we may compute $\int_{\Omega} |D\varphi_E|$. Let $g \in C_0^1(\Omega; \mathbb{R}^n)$ s.t. $|g| \leq 1$, so by Gauss-Green formula

$$\int_{\Omega} \varphi_E \operatorname{div} g \, dx = \int_{E} \operatorname{div} g \, dx = \int_{\partial E} g \cdot \nu \, dH_{n-1} \le H_{n-1}(\partial E \cap \Omega) \tag{1.2}$$

for ν outer unit normal to ∂E . Taking supremum in g yields $\int_{\Omega} |D\varphi_E| < \infty$. Thus $W^{1,1}(\Omega) \subsetneq BV(\Omega)$.

• We in fact prove $\int_{\Omega} |D\varphi_E| = H_{n-1}(\partial E \cap \Omega)$. Since E C^2 boundary, $v \in C^1(\partial E; \mathbb{R}^n)$ with $|\nu| = 1$. Since ∂E is closed in \mathbb{R}^n and \mathbb{R}^n is normal, we may apply Tietze Extension to extend ν to $N \in C^1(\mathbb{R}^n; \mathbb{R}^n)$ with $|N| \leq 1$. By Urysohn's there exists $\eta \in C_0^{\infty}(\Omega)$ s.t. $|\eta| \leq 1$, so let $g = \eta N \in C_0^1(\Omega; \mathbb{R}^n)$

$$\int_{\Omega} \varphi_E \operatorname{div} g \, dx = \int_{E} \operatorname{div} g \, dx = \int_{\partial E} \eta N \cdot \nu \, dH_{n-1} = \int_{\partial E} \eta \, dH_{n-1}$$

Take supremum in g on LHS and in η on RHS yields (due to $H_{n-1} \cup \partial E$ is Radon measure on \mathbb{R}^n)

$$\int_{\Omega} |D\varphi_E| \ge \sup\{ \int_{\partial E} \eta \, dH_{n-1} \mid \eta \in C_0^{\infty}(\Omega), |\eta| \le 1 \} = H_{n-1}(\partial E \cap \Omega)$$
(1.3)

Hence (1.2) and (1.3) together gives, for E C^2 boundary

$$\int_{\Omega} |D\varphi_E| = H_{n-1}(\partial E \cap \Omega) \tag{1.4}$$

Remark 1.1.1. For $f \in BV(\Omega)$, the duality pairing $\langle Df,g \rangle := -\int_{\Omega} f \operatorname{div} g \, dx$ defines the distributional gradient $Df \in (C_0^1(\Omega;\mathbb{R}^n))'$ because $\int_{\Omega} |Df| = \sup_{g \in C_0^1(\Omega;\mathbb{R}^n)} \frac{|\langle Df,g \rangle|}{|g|} < \infty$. By Riesz, the bounded linear functional Df on $C_0^1(\Omega;\mathbb{R}^n)$ defines a vector-valued Radon measure Df on Ω with $\int_{\Omega} |Df|$ the total variation of Df on Ω . Since |Df| is a Borel measure over Ω , one may measure $\int_A |Df|$ for $A \subset \Omega$ not necessarily open. In particular, if $f = \varphi_E$ for some E bounded and C^2 so that $\varphi_E \in BV(\Omega)$, since the two Borel measures $|D\varphi_E|$ and $H_{n-1} \sqcup \partial E$ agrees on all open sets as in (1.4), they agree on all Borel sets.

Definition 1.1.2 (Perimeter & Caccioppoli Set). Let $\Omega \subset \mathbb{R}^n$ be open and E a Borel set. The Perimeter of E in Ω is

$$P(E,\Omega) := \int_{\Omega} |D\varphi_E| = \sup\{ \int_E \operatorname{div} g \, dx \mid g \in C_0^1(\Omega; \mathbb{R}^n), |g| \le 1 \}$$
 (1.5)

If $\Omega = \mathbb{R}^n$ write $P(E) := P(E, \mathbb{R}^n)$. The Borel set E is a Caccioppoli Set if it has locally finite perimeter, i.e., $P(E,\Omega) < \infty$ for each bounded open $\Omega \subset \mathbb{R}^n$.

Remark 1.1.2. One has characterisations for Caccioppoli Sets E

- E is a Caccioppoli Set iff there exist vector-valued Radon measure ω over \mathbb{R}^n s.t.
 - 1. ω has locally finite variation, i.e., for each bounded open $\Omega \subset \mathbb{R}^n$, $|\omega|(\Omega) < \infty$
 - 2. for all $g \in C_0^1(\Omega; \mathbb{R}^n)$ s.t. $|g| \leq 1$, one has $\int_E \operatorname{div} g \, dx = \int g \cdot d\omega$

Proof. \Longrightarrow Since for each Ω bounded and open, $P(E,\Omega)=\int_{\Omega}|D\varphi_E|<\infty$ iff $\varphi_E\in BV(\Omega),\ D\varphi_E$ defines a vector-valued Radon measure with locally finite variation over \mathbb{R}^n . Let $\omega=-D\varphi_E$, so for each fixed Ω ,

$$\int g \cdot d\omega = -\langle D\varphi_E, g \rangle = \int_{\Omega} \varphi_E \operatorname{div} g \, dx = \int_E \operatorname{div} g \, dx$$

 \iff Suppose such ω exists. Then for any $g \in C_0^1(\Omega; \mathbb{R}^n)$ s.t. $|g| \leq 1$

$$\int_{E} \operatorname{div} g \, dx = \int g \cdot d\omega \le |\omega|(\Omega) < \infty$$

take supremum in g on LHS gives $P(E,\Omega) = \int_{\Omega} |D\varphi_E| \le |\omega|(\Omega) < \infty$.

• For E any Borel Set, supp $D\varphi_E \subset \partial E$ where

$$\operatorname{supp} D\varphi_E := \mathbb{R}^n \setminus \bigcup \left\{ A \text{ open } | \forall g \in C_0^1(A; \mathbb{R}^n), |g| \le 1 \implies \int g \cdot D\varphi_E = 0 \right\}$$

Proof. For any $x \notin \partial E$, there exists A open neighbor of x s.t. either $A \subset E$ or $A \subset E^c$. If $A \subset E^c$, $\varphi_E = 0$ on A, so for any $g \in C^1_0(A; \mathbb{R}^n)$, $|g| \le 1$ one indeed has $\int g \cdot D\varphi_E = -\int \varphi_E \operatorname{div} g \, dx = 0$. If $A \subset E$, $\varphi_E = 1$ on A, so for such g, $\int g \cdot D\varphi_E = -\int_E \operatorname{div} g \, dx = -\int \operatorname{div} g \, dx = 0$ since g is compactly supported and one apply the divergence theorem. Thus for any $x \notin \partial E$, $x \notin \operatorname{supp} D\varphi_E$.

• E is a Caccioppoli Set iff the Gauss-Green formula holds in a generalized sense, i.e., for any $\Omega \subset \mathbb{R}^n$ open and bounded, and for any $g \in C_0^1(\Omega; \mathbb{R}^n)$ s.t. $|g| \leq 1$

$$\int_{E} \operatorname{div} g \, dx = -\int_{\partial E} g \cdot D\varphi_{E} \tag{1.6}$$

Proof. \Longrightarrow follows directly. \Longleftarrow By the previous item, $\int_{\partial E} g \cdot D\varphi_E = \int g \cdot D\varphi_E$. Indeed, $\omega := -D\varphi_E$ has bounded variation on each open bounded Ω . Use the first item that characterises Caccioppoli set. \square

• Given Caccioppoli set E, one has useful identification of $\varphi_E \in BV$

Corollary 1.1.1. For E Caccioppoli, and $\Omega \subset \mathbb{R}^n$ open. If either E or Ω is bounded, $\varphi_E \in BV(\Omega)$.

Proof. Since either E or Ω is bounded, $\|\varphi_E\|_{L^1(\Omega)} = |E \cap \Omega| < \infty$ hence $\varphi_E \in L^1(\Omega)$. Now one compute $\int_{\Omega} |D\varphi_E|$, and may proceed in 2 directions. If Ω itself is bounded, since E Caccioppoli gives locally finite perimeter, indeed $\int_{\Omega} |D\varphi_E| < \infty$. If on the other hand, E is bounded, for any $g \in C_0^1(\Omega; \mathbb{R}^n)$ s.t. $|g| \leq 1$, using (1.6)

$$\int_{\Omega} \varphi_E \operatorname{div} g \, dx = \int_{E} \operatorname{div} g \, dx = -\int_{\partial E} g \cdot D\varphi_E$$

 ∂E is bounded and closed, hence compact. Then one may cover ∂E using sufficient large open ball B_R , and since E is Caccioppoli, $|D\varphi_E|$ defines locally finite variation positive measure

$$-\int_{\partial E} g \cdot D\varphi_E \le \int_{B_D \cap \Omega} |D\varphi_E| < \infty$$

Theorem 1.1.1 (Semi-continuity). Let $\Omega \subset \mathbb{R}^n$ open. $\{f_j\} \subset BV(\Omega)$ s.t. $f_j \to f$ in $L^1_{loc}(\Omega)$, then

$$\int_{\Omega} |Df| \le \liminf_{j \to \infty} \int_{\Omega} |Df_j| \tag{1.7}$$

Proof. For any $g \in C_0^1(\Omega; \mathbb{R}^n)$ s.t. $|g| \leq 1$

$$\int_{\Omega} f \operatorname{div} g \, dx = \lim_{j \to \infty} \int_{\Omega} f_j \operatorname{div} g \, dx \le \liminf_{j \to \infty} |Df_j|$$

take supremum in g on LHS.

Remark 1.1.3. The equality in (1.7) may not be achieved. Let $\Omega = (0, 2\pi)$ and $f_j(x) = \frac{1}{j}\sin(jx)$. Note $\int_0^{2\pi} |\frac{1}{j}\sin(jx)| dx \le 2\pi \frac{1}{j} \to 0$ so $f_j \to 0$ in $L^1(0, 2\pi)$. But $f'_j(x) = \cos(jx)$ and $\int_0^{2\pi} |Df_j| = \int_0^{2\pi} |\cos(jx)| dx = 4$.

Proposition 1.1.1. For $\Omega \subset \mathbb{R}^n$ open, $BV(\Omega)$ with norm $||f||_{BV} := ||f||_{L^1} + \int_{\Omega} |Df|$ is a Banach Space.

Proof. That $\|f\|_{BV}$ defines a norm follows from L^1 norm and homogeneity, subadditivity of total variation. To see $BV(\Omega)$ is complete, take Cauchy sequence $\{f_j\}$ in $BV(\Omega)$. Since $\{f_j\}$ is already Cauchy in $L^1(\Omega)$, there exists $f \in L^1(\Omega)$ s.t. $\|f - f_j\|_{L^1} \to 0$. Also, there exists N s.t. $\forall m, n \geq N$, $\int_{\Omega} |D(f_m - f_n)| \leq 1$, one has $\int_{\Omega} |Df_j| \leq \max_{1 \leq i \leq N} \int_{\Omega} |Df_i| + 1$ uniformly bounded. Hence (1.7) semicontinuity gives $\int_{\Omega} |Df| < \infty$ so $f \in BV(\Omega)$. It suffices to show $\int_{\Omega} |D(f - f_j)| \to 0$. For any $\varepsilon > 0$, there exists N s.t. for any $j, k \geq N$, $\int_{\Omega} |D(f_j - f_k)| \leq \varepsilon$. Fix j, apply (1.7) semicontinuity to $\{f_j - f_k\}_k$ so $\int_{\Omega} |D(f_j - f)| \leq \liminf_{k \to \infty} \int_{\Omega} |D(f_j - f_k)| \leq \varepsilon$. Take ε to 0. \square

Proposition 1.1.2. Let $\Omega \subset \mathbb{R}^n$ open. $f, f_j \in BV(\Omega)$ s.t. $f_j \to f$ in $L^1_{loc}(\Omega)$ and $\int_{\Omega} |Df| = \lim_{j \to \infty} \int_{\Omega} |Df_j|$. Then for any $A \subset \Omega$ open, one has certain reverse direction to (1.7)

$$\int_{\overline{A}\cap\Omega} |Df| \ge \limsup_{j\to 0} \int_{\overline{A}\cap\Omega} |Df_j|$$

in particular, if $\int_{\partial A \cap \Omega} |Df| = 0$, one has

$$\int_{A} |Df| = \lim_{j \to 0} \int_{A} |Df_j| \tag{1.8}$$

Proof. Let $B := \Omega \setminus \overline{A}$ so $B \subset \Omega$ open. By semicontinuity (1.7)

$$\int_{A} |Df| \le \liminf_{j \to 0} \int_{A} |Df_{j}| \qquad \int_{B} |Df| \le \liminf_{j \to 0} \int_{B} |Df_{j}|$$

one calculate

$$\begin{split} \int_{\overline{A}\cap\Omega} |Df| + \int_{B} |Df| &= \int_{\Omega} |Df| = \lim_{j\to\infty} \int_{\Omega} |Df_{j}| \\ &\geq \limsup_{j\to0} \int_{\overline{A}\cap\Omega} |Df_{j}| + \liminf_{j\to\infty} \int_{B} |Df_{j}| \geq \limsup_{j\to0} \int_{\overline{A}\cap\Omega} |Df_{j}| + \int_{B} |Df| \end{split}$$

since $f \in BV(\Omega)$, indeed $\int_B |Df| < \infty$ so one may cancel out. To see (1.8), one notice $A \subset \Omega$.

1.1.2 Approximation by smooth functions

Definition 1.1.3. $\eta(x)$ is mollifier if $\begin{cases} \eta \in C_0^{\infty}(\mathbb{R}^n) \\ \operatorname{supp} \eta \subset B_1 \\ \int \eta \, dx = 1 \end{cases}$ If moreover, $\begin{cases} \eta \geq 0 \\ \eta(x) = \mu(|x|) \end{cases}$ η is positive symmetric.

 $\textit{Standard example for such positive symmetric mollifier is } \eta = \frac{1}{\int \gamma dx} \gamma \textit{ where } \gamma(x) := \begin{cases} 0 & |x| \geq 1 \\ \exp(\frac{1}{|x|^2 - 1}) & |x| < 1 \end{cases}$

Definition 1.1.4. Given a positive symmetric mollifier η , the rescaled mollifier $\eta_{\varepsilon}(x) := \frac{1}{\varepsilon^n} \eta(\frac{x}{\varepsilon})$ satisfies $\sup \eta_{\varepsilon} \subset B_{\varepsilon}$. Given $f \in L^1_{loc}(\Omega)$, define its mollification $f_{\varepsilon} := \eta_{\varepsilon} * f$

$$f_{\varepsilon}(x) = \frac{1}{\varepsilon^n} \int_{\mathbb{R}^n} \eta(\frac{x-y}{\varepsilon}) f(y) \ dy = (-1)^n \int_{\mathbb{R}^n} \eta(z) f(x-\varepsilon z) \, dz = \int_{\mathbb{R}^n} \eta(z) f(x+\varepsilon z) \, dz$$
 (1.9)

Lemma 1.1.1. One has tools from mollification

• $f_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$, $f_{\varepsilon} \to f$ in $L^1_{loc}(\Omega)$. If $f \in L^1(\Omega)$, $f_{\varepsilon} \to f$ in $L^1(\Omega)$.

- If $A \leq f(x) \leq B$ for any $x \in \Omega$, then $A \leq f_{\varepsilon}(x) \leq B$ for any $x \in \Omega$.
- If $f, g \in L^1(\mathbb{R}^n)$, then $\int_{\mathbb{R}^n} f_{\varepsilon} g dx = \int_{\mathbb{R}^n} f g_{\varepsilon} dx$.
- If $f \in C^1(\mathbb{R}^n)$, then $(\frac{\partial}{\partial x_i}f)_{\varepsilon} = \frac{\partial}{\partial x_i}(f_{\varepsilon})$ for $i = 1, \dots, n$.
- supp $f := \overline{\{x \in \mathbb{R}^n \mid f \neq 0\}} \subset A$, then supp $f_{\varepsilon} \subset A_{\varepsilon} := \{x \mid \operatorname{dist}(x, A) \leq \varepsilon\}$.

Proposition 1.1.3. $\Omega \subset \mathbb{R}^n$ open, $f \in BV(\Omega)$. For $A \subset\subset \Omega$ open s.t. $\int_{\partial A} |Df| = 0$, one has

$$\int_{A} |Df| = \lim_{\varepsilon \to 0} \int_{A} |Df_{\varepsilon}| dx \tag{1.10}$$

Proof. Since $f \in L^1(\Omega)$, $f_{\varepsilon} \to f$ in $L^1(\Omega)$, by semicontinuity (1.7), one has $\int_A |Df| \le \liminf_{\varepsilon \to 0} \int_A |Df_{\varepsilon}|$. It suffices to prove $\int_A |Df| \ge \limsup_{\varepsilon \to 0} \int_A |Df_{\varepsilon}|$. For any $g \in C^1_0(A; \mathbb{R}^n)$ s.t. $|g| \le 1$, using tools from mollification

$$\int_{A} f_{\varepsilon} \operatorname{div} g \, dx = \int_{A} f(\operatorname{div} g)_{\varepsilon} \, dx = \int_{A} f \operatorname{div}(g_{\varepsilon}) \, dx$$

 $|g| \leq 1 \implies |g_{\varepsilon}| \leq 1$ and supp $g \subset A \implies \text{supp } g_{\varepsilon} \subset A_{\varepsilon}$. Hence taking supremum in g

$$\int_{A} |Df_{\varepsilon}| \le \int_{A_{\varepsilon}} |Df|$$

Take \limsup on LHS and use continuity from above on RHS $(f \in BV(\Omega))$ defines a Radon measure |Df|

$$\limsup_{\varepsilon \to 0} \int_A |Df_\varepsilon| \le \lim \int_{A_\varepsilon} |Df| = \int_{\overline{A}} |Df|$$

Now by our assumption, RHS equals $\int_A |Df|$.

Remark 1.1.4. Note in (1.10) we require $A \subset\subset \Omega$ not because we need boundedness, but because we wish that A and A_{ε} do not touch $\partial\Omega$. And this problem is resolved for taking $\Omega = \mathbb{R}^n$, and indeed, one may do so for $A = A_{\varepsilon} = \mathbb{R}^n$ ($\partial A = \partial \mathbb{R}^n = \varnothing$). Now for any $f \in BV(\mathbb{R}^n)$, one has

$$\int_{\mathbb{R}^n} |Df| = \lim_{\varepsilon \to 0} \int_{\mathbb{R}^n} |Df_{\varepsilon}| \, dx \tag{1.11}$$

Indeed for E bounded Caccioppoli, $\varphi_E \in BV(\mathbb{R}^n)$ by Corollary 1.1.1, so (1.11) applies to φ_E .

(1.10) motivates our approximation of $f \in BV(\Omega)$ using smooth functions. Note approximation in BV norm should not be expected since the BV-closure of $C^{\infty}(\Omega)$ is $W^{1,1}(\Omega) \subseteq BV(\Omega)$.

Theorem 1.1.2 (Approximation using C^{∞}). $\Omega \subset \mathbb{R}^n$ open, $f \in BV(\Omega)$. There exists $\{f_i\} \subset C^{\infty}(\Omega)$ s.t.

$$\lim_{j \to \infty} \int_{\Omega} |f_j - f| \, dx = 0 \tag{1.12}$$

$$\lim_{j \to 0} \int_{\Omega} |Df_j| dx = \int_{\Omega} |Df| \tag{1.13}$$

Proof. Since $f \in BV(\Omega)$, |Df| on Ω is finite measure, so $\forall \varepsilon > 0$, there exists $m \in \mathbb{N}$ s.t. $\int_{\Omega \setminus \Omega_0} |Df| < \varepsilon$ where

$$\Omega_k := \left\{ x \in \Omega \mid \operatorname{dist}(x, \partial \Omega) > \frac{1}{m+k} \right\} \qquad k \ge 0$$
(1.14)

Define sequence $\{A_i\}_{i\geq 1}$ s.t. $A_1:=\Omega_2, A_i:=\Omega_{i+1}\setminus\overline{\Omega}_{i-1}$ for $i\geq 2$. Note A_i are open and $\Omega\subset\bigcup_{i\geq 1}A_i$. There exists smooth partition of unity $\{\phi_i\}$ subordinate to the cover $\{A_i\}$ s.t.

$$\phi_i \in C_0^{\infty}(A_i), \quad 0 \le \phi_i \le 1, \quad \sum_{i=1}^{\infty} \phi_i = 1$$

Note for any $x \in \Omega$, at most 2 of the A_i covers x, hence $\sum_i \phi_i$ is finite sum pointwise, thus $f = \sum_{i=1}^{\infty} f \phi_i$. One wish to construct certain mollification of f so that our desired approximation holds, and a common method is to mollify each $f \phi_i$ with ε_i chose for each $i \geq 1$ then sum them up. Each ε_i needs to satisfy (let $\Omega_{-1} := \emptyset$)

$$\operatorname{supp}(\eta_{\varepsilon_i} * (f\phi_i)) \subset \Omega_{i+2} \setminus \overline{\Omega}_{i-2} \tag{1.15}$$

$$\|\eta_{\varepsilon_i} * (f\phi_i) - f\phi_i\|_{L^1(\Omega)} < \varepsilon/2^i \tag{1.16}$$

$$\|\eta_{\varepsilon_i} * (fD\phi_i) - fD\phi_i\|_{L^1(\Omega)} < \varepsilon/2^i$$
(1.17)

and define $f_{\varepsilon} := \sum_{i=1}^{\infty} \eta_{\varepsilon_i} * (f\phi_i)$. Note $f_{\varepsilon} \in C^{\infty}(\Omega)$ since at each $x \in \Omega$, at most 4 supports from (1.15) covers x, hence finite sum of smooth functions gives smoothness. One immediately has from (1.16)

$$\int_{\Omega} |f_{\varepsilon} - f| dx \le \sum_{i=1}^{\infty} \int_{\Omega} |\eta_{i} * (f\phi_{i}) - f\phi_{i}| dx < \varepsilon$$

hence (1.12) holds. And by semicontinuity (1.7), one has $\int_{\Omega} |Df| \leq \liminf_{\varepsilon \to 0} \int_{\Omega} |Df_{\varepsilon}|$. It suffices to prove $\int_{\Omega} |Df| \geq \limsup_{\varepsilon \to 0} \int_{\Omega} |Df_{\varepsilon}|$. For any $g \in C_0^1(\Omega; \mathbb{R}^n)$ s.t. $|g| \leq 1$,

$$\int_{\Omega} f_{\varepsilon} \operatorname{div} g \, dx = \sum_{i=1}^{\infty} \int_{\Omega} \eta_{\varepsilon_i} * (f\phi_i) \operatorname{div} g \, dx = \sum_{i=1}^{\infty} \int_{\Omega} f\phi_i \operatorname{div} (\eta_{\varepsilon_i} * g) \, dx$$

notice

$$\operatorname{div}(\phi_i \, \eta_{\varepsilon_i} * g) = D\phi_i \cdot (\eta_{\varepsilon_i} * g) + \phi_i \operatorname{div}(\eta_{\varepsilon_i} * g)$$

hence

$$\int_{\Omega} f_{\varepsilon} \operatorname{div} g \, dx = \sum_{i=1}^{\infty} \int_{\Omega} f \left[\operatorname{div}(\phi_{i} \, \eta_{\varepsilon_{i}} * g) - D\phi_{i} \cdot (\eta_{\varepsilon_{i}} * g) \right] \, dx$$

$$= \int_{\Omega} f \operatorname{div}(\phi_{1} \, \eta_{\varepsilon_{1}} * g) \, dx + \sum_{i=2}^{\infty} \int_{\Omega} f \operatorname{div}(\phi_{i} \, \eta_{\varepsilon_{i}} * g) \, dx - \sum_{i=1}^{\infty} \int_{\Omega} f D\phi_{i} \cdot (\eta_{\varepsilon_{i}} * g) \, dx$$

$$= \int_{\Omega} f \operatorname{div}(\phi_{1} \, \eta_{\varepsilon_{1}} * g) \, dx + \sum_{i=2}^{\infty} \int_{\Omega} f \operatorname{div}(\phi_{i} \, \eta_{\varepsilon_{i}} * g) \, dx - \sum_{i=1}^{\infty} \int_{\Omega} \eta_{\varepsilon_{i}} * (f D\phi_{i}) \cdot g \, dx$$

notice the pointwise finite sum implies

$$\sum_{i=1}^{\infty} \phi_i = 1 \implies \sum_{i=1}^{\infty} D\phi_i = 0$$

hence one may add back the sum of gradients

$$\int_{\Omega} f_{\varepsilon} \operatorname{div} g \, dx = \int_{\Omega} f \operatorname{div} (\phi_1 \, \eta_{\varepsilon_1} * g) \, dx + \sum_{i=2}^{\infty} \int_{\Omega} f \operatorname{div} (\phi_i \, \eta_{\varepsilon_i} * g) \, dx - \sum_{i=1}^{\infty} \int_{\Omega} \left[\eta_{\varepsilon_i} * (fD\phi_i) - fD\phi_i \right] \cdot g \, dx$$

now by direct estimate, (1.15) and (1.17) respectively

$$\int_{\Omega} f \operatorname{div}(\phi_{1} \eta_{\varepsilon_{1}} * g) \, dx \leq \int_{\Omega} |Df|$$

$$\sum_{i=2}^{\infty} \int_{\Omega} f \operatorname{div}(\phi_{i} \eta_{\varepsilon_{i}} * g) \, dx \leq 3 \int_{\Omega \setminus \Omega_{0}} |Df| < 3\varepsilon$$

$$\sum_{i=1}^{\infty} \int_{\Omega} [\eta_{\varepsilon_{i}} * (fD\phi_{i}) - fD\phi_{i}] \cdot g \, dx < \varepsilon$$

Hence taking supremum in a on LHS gives

$$\int_{\Omega} |Df_{\varepsilon}| \le \int_{\Omega} |Df| + 4\varepsilon \quad \Longrightarrow \limsup_{\varepsilon \to 0} \int_{\Omega} |Df_{\varepsilon}| \le \int_{\Omega} |Df|$$

and (1.13) immediately follows.

Remark 1.1.5 (Boundary Behavior of Smooth Approximation). $\Omega \subset \mathbb{R}^n$ open, $f \in BV(\Omega)$. For every $\varepsilon > 0$, N > 0 and $x_0 \in \partial \Omega$, let f_{ε} be as above

$$\lim_{\rho \to 0} \frac{1}{\rho^N} \int_{B_{\rho}(x_0) \cap \Omega} |f_{\varepsilon} - f| \, dx = 0 \tag{1.18}$$

Proof. For $\varepsilon > 0$, choose $m \in \mathbb{N}$, Ω_k as in (1.14) and f_{ε} as in Theorem 1.1.2. One wish to determine i_0 w.r.t. ρ so that for any $x \in B_{\rho}(x_0) \cap \Omega$, one may write

$$f_{\varepsilon}(x) - f(x) = \sum_{i=1}^{\infty} (\eta_{\varepsilon_i} * (f\phi_i) - f\phi_i) = \sum_{i=1}^{\infty} (\eta_{\varepsilon_i} * (f\phi_i) - f\phi_i)$$

Making use of (1.15), one needs i_0 to be the smallest integer i s.t. $\partial B_{\rho}(x_0) \cap \Omega$ touches supp $\eta_{\varepsilon_i} * (f\phi_i)$, i.e.

$$\frac{1}{m+i_0+2} \le \rho \le \frac{1}{m+i_0+1} \implies i_0 = \lceil \frac{1}{\rho} \rceil - m - 2$$

thus via (1.16), for some constant C independent of ρ

$$\int_{B_{\rho}(x)\cap\Omega} |f_{\varepsilon} - f| \, dx \le \sum_{i=i_0}^{\infty} \|\eta_{\varepsilon_i} * (f\phi_i) - f\phi_i\|_{L^1(\Omega)} \le C \, 2^{-i_0} = C \, 2^{-\frac{1}{\rho}}$$

where $2^{-\frac{1}{\rho}}$ goes to 0 exponentially fast. Hence multiplying both sides by $\frac{1}{\rho^N}$ and sending $\rho \to 0$ gives (1.18). \square

1.1.3 Compactness Theorem and Existence of Minimizing Caccioppoli sets

One shall recall the GNS type Sobolev Embedding and Rellich Theorem from Sobolev Spaces.

Lemma 1.1.2 (Sobolev Embedding). $\Omega \subset \mathbb{R}^n$ bounded open. $\partial \Omega$ Lipschitz continuous. $1 \leq p \leq n$. Then

$$W^{1,p}(\Omega) \subset L^q(\Omega) \qquad \forall \ 1 \le q \le \frac{np}{n-p}$$
 (1.19)

i.e., for any such $1 \le q \le \frac{np}{n-p}$, there exists $C = C(n, p, q, \Omega)$ s.t.

$$||f||_{L_q} \le C \, ||f||_{W^{1,p}} \tag{1.20}$$

Lemma 1.1.3 (Rellich-Kondrachov). $\Omega \subset \mathbb{R}^n$ bounded open. $\partial \Omega$ Lipschitz continuous. $1 \leq p < n$. Then

$$W^{1,p}(\Omega) \subset\subset L^q(\Omega) \qquad \forall \ 1 \leq q < \frac{np}{n-p}$$
 (1.21)

i.e., each uniformly bounded sequence $\{f_j\}$ in $W^{1,p}(\Omega)$ norm has a convergent subsequence $\{f_{j_k}\}$ in $L^q(\Omega)$ norm for each $q \in [1, \frac{np}{n-p})$.

Using above lemmas, one may show for the corresponding BV Embedding and a Compactness Theorem.

Theorem 1.1.3 (GNS-type BV Embedding). $\Omega \subset \mathbb{R}^n$ bounded open. $\partial \Omega$ Lipschitz continuous. Then

$$BV(\Omega) \subset L^p(\Omega) \qquad \forall \ 1 \le p \le \frac{n}{n-1}$$
 (1.22)

i.e., for any such $1 \le p \le \frac{n}{n-1}$, there exists $C = C(n, p, \Omega)$ s.t.

$$||f||_{L^p} \le C \, ||f||_{BV} \tag{1.23}$$

Proof. For any $f \in BV(\Omega)$, by smooth approximation Theorem 1.1.2, choose $\{f_j\} \subset C^{\infty}(\Omega)$ s.t. $||f_j - f||_{L^1} \to 0$ and $\int_{\Omega} |Df| = \lim_{j \to 0} |Df_j|$. Then there exists M large enough s.t. $||f_j||_{BV} \leq M$ uniformly. Since $C^{\infty}(\Omega) \subset W^{1,1}(\Omega)$, by Sobolev Embedding (1.19), for any $1 \leq p \leq \frac{n}{n-1}$, there exists $C = C(n, p, \Omega)$ s.t.

$$||f_j||_{L^p} \le C (||f_j||_{L^1} + ||Df_j||_{L^1}) \le CM$$

uniformly in j. If p=1, by definition of BV norm there's nothing to prove. For $1 , the uniform boundedness of <math>f_j$ in L^p implies, from reflexivity of L^p and Banach Alaoglu, a weakly convergent subsequence in L^p . Still denoting f_j , ones has $f_0 \in L^p$ s.t. $f_j \rightharpoonup f_0$ in L^p . Since Ω is bounded, by Hölder, a priori one knows f_j , $f_0 \in L^1(\Omega)$, and for any $g \in (L^1(\Omega))^* = L^{\infty}(\Omega)$ (so $g^{\frac{p-1}{p}} \in L^{p'}(\Omega)$)

$$\left| \int_{\Omega} (f_j - f_0) g \right| dx = \left| \int_{\Omega} (f_j - f_0) g^{\frac{p-1}{p}} g^{\frac{1}{p}} \right| dx \le \left| \int_{\Omega} (f_j - f_0) g^{\frac{p-1}{p}} dx \right| \left\| g^{\frac{1}{p}} \right\|_{L^{\infty}(\Omega)} \to 0$$

hence one has $f_j \rightharpoonup f_0$ in L^1 . But since we already know $f_j \to f$ in L^1 , by uniqueness of L^1 strong limit, $f_0 = f$. Finally, by lower semicontinuity of weak convergence,

$$||f||_{L^{p}} \leq \liminf_{j \to 0} ||f_{j}||_{L^{p}} \leq C \liminf_{j \to 0} \left(||f_{j}||_{L^{1}} + ||Df_{j}||_{L^{1}} \right) = C ||f||_{BV}$$

Theorem 1.1.4 (Compactness). $\Omega \subset \mathbb{R}^n$ bounded open. $\partial \Omega$ Lipschitz continuous. Then

$$BV(\Omega) \subset\subset L^p(\Omega) \qquad \forall \ 1 \le p < \frac{n}{n-1}$$
 (1.24)

i.e., each uniformly bounded sequence $\{f_j\}$ in $BV(\Omega)$ norm has a convergent subsequence $\{f_{j_k}\}$ in $L^p(\Omega)$ norm for each $p \in [1, \frac{n}{n-1})$. Moreover, the limiting function $f \in BV(\Omega)$.

Proof. Let $\{f_j\} \subset BV(\Omega)$ uniformly bounded by $\|f_j\|_{BV(\Omega)} \leq M$. By smooth approximation Theorem 1.1.2, $\forall j$, choose $\tilde{f}_j \in C^{\infty}(\Omega)$ s.t.

$$\int_{\Omega} |f_j - \tilde{f}_j| < \frac{1}{j}, \qquad \int_{\Omega} |D\tilde{f}_j| dx \le M + 2$$

Now since $\{\tilde{f}_j\}\subset C^\infty(\Omega)$ is uniformly bounded in $W^{1,1}(\Omega)$ norm, by Rellich (1.21), there exists convergent subsequence, still denoting \tilde{f}_j , in L^p for any $1\leq p<\frac{n}{n-1}$. Fix any such p, let $f\in L^p(\Omega)$ s.t. $\left\|\tilde{f}_j-f\right\|_{L^p}\to 0$. Note Ω is bounded, hence Hölder inequality gives convergence in L^1 (p' Hölder conjugate w.r.t p)

$$\int_{\Omega} |f - \tilde{f}_j| \, dx \le \left(\int_{\Omega} |f - \tilde{f}_j|^p \, dx \right)^{\frac{1}{p}} |\Omega|^{\frac{1}{p'}} \to 0$$

and then one may apply semicontinuity (1.7) which gives

$$\int_{\Omega} |Df| \le \liminf_{j \to \infty} |D\tilde{f}_j| dx \le M + 2 < \infty$$

to conclude $f \in BV(\Omega)$. It suffices to show $||f_j - f||_{L^p} \to 0$. But by Minkowski

$$||f_j - f||_{L^p} \le ||f_j - \tilde{f}_j||_{L^p} + ||\tilde{f}_j - f||_{L^p}$$

where the former term convergence due to BV Embedding (1.22) and DCT

$$|f_j - \tilde{f}_j|^p \le |f_j|^p + |\tilde{f}_j|^p \in L^1(\Omega) \implies \left\| f_j - \tilde{f}_j \right\|_{L^p} \to 0$$

and the latter term converges by Rellich (1.21)

Theorem 1.1.5 (Existence of Minimizing Caccioppoli Set). Let $\Omega \subset \mathbb{R}^n$ be bounded open, and let L be a Caccioppoli Set. Then there exists a Borel set E whose characteristic function φ_E minimizes the functional $\int |D\varphi_F|$ among all Borel sets F that agrees with L outside Ω , i.e., $\exists E$ Borel s.t. E = L outside Ω and

$$\int |D\varphi_E| \le \int |D\varphi_F| \tag{1.25}$$

for any $F \subset \mathbb{R}^n$ Borel s.t. F = L outside Ω .

Proof. One wish to use compactness that extracts a convergent subsequence in L^1 . But notice we have no information about regularity of $\partial\Omega$, hence we first take R>0 large s.t. $\Omega\subset\subset B_R(0)$ ball of radius R and we work with B_R . Take a minimizing sequence of sets $\{E_j\}$ s.t. $E_j=L$ outside Ω for any j and

$$\lim_{j \to \infty} \int_{B_R} |D\varphi_{E_j}| = \inf\{ \int_{B_R} |D\varphi_F| \mid F = L \text{ outside } \Omega \}$$
 (1.26)

notice L itself agrees with L outside Ω and since L is a Caccioppoli set, on B_R bounded open, $\int_{B_R} |D\varphi_L| < \infty$. Hence the RHS of $(1.26) < \infty$. Now we may take M large enough so $\int_{B_R} |D\varphi_{E_j}| < M$ uniformly bounded. And since B_R are bounded, $\varphi_{E_j} \in L^1(B_R)$ for any j, and in particular, $\|\varphi_{E_j}\|_{L^1(B_R)} \le |B_R| < \infty$ uniformly, so $\{\varphi_{E_j}\} \subset BV(B_R)$ is uniformly bounded in BV norm. B_R has smooth boundary, so Theorem 1.1.4 gives a convergent subsequence $\varphi_{E_j} \to f$ in $L^1(B_R)$. Again passing to subsequence, $\varphi_{E_j} \to f$ pointwise a.e., but φ_{E_j} are characteristic functions, so $f = \varphi_E$ agrees with characteristic function of some Borel set E a.e. Indeed $E = E_j = L$ outside Ω . And since $\varphi_{E_j} \to \varphi_E$ in $L^1(B_R)$, by semicontinuity (1.7), $\int_{B_R} |D\varphi_E| \le \lim_{j \to \infty} \int_{B_R} |D\varphi_{E_j}|$

$$\int_{B_R} |D\varphi_E| = \inf \{ \int_{B_R} |D\varphi_F| \mid F = L \text{ outside } \Omega \}$$

Finally we recover estimate on \mathbb{R}^n from B_R . For any $F \subset \mathbb{R}^n$ Borel s.t. F = L outside Ω

$$\begin{split} \int |D\varphi_E| &= \int_{B_R} |D\varphi_E| + \int_{B_R^c} |D\varphi_E| = \int_{B_R} |D\varphi_E| + \int_{B_R^c} |D\varphi_L| \\ &\leq \int_{B_R} |D\varphi_F| + \int_{B_R^c} |D\varphi_L| = \int_{B_R} |D\varphi_F| + \int_{B_R^c} |D\varphi_F| = \int |D\varphi_F| \end{split}$$

Remark 1.1.6. One has information for the minimizing set E from Theorem 1.1.5.

- L determines boundary values for E. Since $D\varphi_E$ is supported within ∂E , or more particularly, imagine E smooth so $\int_{\Omega} |D\varphi_E| = H_{n-1}(\partial E \cap \Omega)$ really measures the surface area of ∂E within Ω , then (1.25) indicates that ' ∂E within Ω ' minimizes the surface area for all 'sets within Ω that has boundary $\partial L \cap \partial \Omega$ '.
- Imagine $\partial L \cap \partial \Omega$ fixed, then it determines a surface spanning $\partial L \cap \partial \Omega$. But now curve the portion $\Omega \cap L$ towards Ω , it serves as obstacle forcing ' ∂E within Ω ' away from the minimal surface spanned by $\partial L \cap \partial \Omega$.

1.1.4 Coarea formula and Smooth Approximation of Caccioppolis sets

One shall recall Coarea formula for Lipschitz functions

Lemma 1.1.4 (Coarea Formula). Let $f: \mathbb{R}^n \to \mathbb{R}^m$ Lipschitz for $n \geq m$. Then for any $A \subset \mathbb{R}^n$ Borel

$$\int_{A} \sqrt{\det(Df^*Df)}(x) dx = \int_{\mathbb{R}^m} H_{n-m} \left(A \cap f^{-1}(y) \right) dy \tag{1.27}$$

With the Classical Coarea formula, one may prove for BV functions.

Theorem 1.1.6 (Coarea Formula). $\Omega \subset \mathbb{R}^n$ open. $f \in BV(\Omega)$. Denote $F_t := \{x \in \Omega \mid f(x) < t\}$, then

$$\int_{\Omega} |Df| = \int_{-\infty}^{\infty} \left(\int_{\Omega} |D\varphi_{F_t}| \right) dt \tag{1.28}$$

Proof. \leq . First let $f \geq 0$. $\forall x \in \Omega$, $f(x) = \int_0^\infty \varphi_{F_t} dt = \int_0^\infty (1 - \varphi_{F_t}) dt$, so $\forall g \in C_0^1(\Omega; \mathbb{R}^n)$ s.t. $|g| \leq 1$

$$\int_{\Omega} f \operatorname{div} g \, dx = \int_{\Omega} \left(\int_{0}^{\infty} (1 - \varphi_{F_{t}}) \, dt \right) \operatorname{div} g \, dx = \int_{0}^{\infty} \left(\int_{\Omega} \operatorname{div} g \, dx - \int_{\Omega} \varphi_{F_{t}} \operatorname{div} g \, dx \right) \, dt$$

By Fubini, and then note compact support of g

$$= -\int_0^\infty \int_\Omega \varphi_{F_t} \operatorname{div} g \, dx \, dt \le \int_0^\infty \int_\Omega |D\varphi_{F_t}| \, dt$$

Then let $f \leq 0$. $\forall x \in \Omega$, $f(x) = -\int_{-\infty}^{0} \varphi_{F_t} dt$, so $\forall g \in C_0^1(\Omega; \mathbb{R}^n)$ s.t. $|g| \leq 1$

$$\int_{\Omega} f \operatorname{div} g \, dx = -\int_{\Omega} \left(\int_{-\infty}^{0} \varphi_{F_t} \, dt \right) \operatorname{div} g \, dx = -\int_{-\infty}^{0} \left(\int_{\Omega} \varphi_{F_t} \operatorname{div} g \, dx \right) \, dt \le \int_{-\infty}^{0} \int_{\Omega} |D\varphi_{F_t}| \, dt$$

Hence for any $f \in BV(\Omega)$, write $f = f^+ - f^-$ for $f^+, f^- \ge 0$, so

$$\int_{\Omega} f \operatorname{div} g \, dx \le \int_{\Omega} \left(f^{+} - f^{-} \right) \operatorname{div} g \, dx \le \int_{-\infty}^{\infty} \int_{\Omega} |D\varphi_{F_{t}}| \, dt$$

taking supremum in g gives $\int_{\Omega} |Df| \leq \int_{-\infty}^{\infty} \int_{\Omega} |D\varphi_{F_t}| dt$.

 \geq . One first show (1.28) for $f \in C(\Omega)$ continuous piecewise linear function. Let $\Omega = \bigcup_{i=1}^{N} \Omega_i$ for Ω_i disjoint, open where $f(x) = \langle a_i, x \rangle + b_i$ for $a_i \in \mathbb{R}^n$, $b_i \in \mathbb{R}$, $x \in \Omega_i$. Then $\int_{\Omega} |Df| = \sum_{i=1}^{N} |a_i| |\Omega_i|$. On the other hand, F_t now has piecewise smooth boundary, so

$$\int_{\Omega_i} |D\varphi_{F_t}| = H_{n-1}(\partial F_t \cap \Omega_i) = H_{n-1}\left\{x \in \Omega_i \mid f(x) = t\right\} = H_{n-1}\left\{x \in \Omega_i \mid \langle a_i, x \rangle + b_i = t\right\}$$

Hence integrating w.r.t. t and by change of coordinates

$$\begin{split} \int_{-\infty}^{\infty} \int_{\Omega_{i}} \left| D\varphi_{F_{t}} \right| dt &= \int_{-\infty}^{\infty} H_{n-1} \left\{ x \in \Omega_{i} \mid \langle a_{i}, \, x \rangle + b_{i} = t \right\} \, dt \\ &= \int_{-\infty}^{\infty} \left| a_{i} \right| H_{n-1} \left\{ x \in \Omega_{i} \mid \frac{\langle a_{i}, \, x \rangle}{\left| a_{i} \right|} + \frac{b_{i}}{\left| a_{i} \right|} = \frac{t}{\left| a_{i} \right|} \right\} \, d\left(\frac{t}{\left| a_{i} \right|} \right) \\ &= \left| a_{i} \right| \int_{-\infty}^{\infty} H_{n-1} \left(\Omega_{i} \cap \left\{ \frac{\langle a_{i}, \, x \rangle}{\left| a_{i} \right|} + \frac{b_{i}}{\left| a_{i} \right|} = t \right\} \right) \, dt \end{split}$$

using Classical Coarea formula (1.27) with m = 1

$$= |a_i| \int_{\Omega_i} 1 \, dx = |a_i| |\Omega_i|$$

hence for $f \in C(\Omega)$ piecewise linear, (1.28) holds

$$\int_{\Omega} |Df| = \sum_{i=1}^{N} |a_i| |\Omega_i| = \sum_{i=1}^{N} \int_{-\infty}^{\infty} \int_{\Omega_i} |D\varphi_{F_t}| dt = \int_{-\infty}^{\infty} \int_{\Omega} |D\varphi_{F_t}| dt$$

Now take any $f \in C^{\infty}(\Omega)$, approximate using sequence of $\{f_j\} \subset C(\Omega)$ continuous piecewise linear functions in $W^{1,1}(\Omega)$ norm. In particular, one has

$$||f - f_j||_{L^1(\Omega)} \to 0, \qquad ||Df||_{L^1(\Omega)} = \lim_{j \to 0} ||Df_j||_{L^1(\Omega)}$$
 (1.29)

where the latter follows from $||Df - Df_j||_{L^1(\Omega)} \to 0$ and DCT. Denoting $F_{j,t} := \{x \in \Omega \mid f_j(x) < t\}$, one has

$$|f(x) - f_j(x)| = \int_{-\infty}^{\infty} |\varphi_{F_t}(x) - \varphi_{F_{j,t}}(x)| dt \implies ||f - f_j||_{L^1(\Omega)} = \int_{-\infty}^{\infty} \int_{\Omega} |\varphi_{F_t}(x) - \varphi_{F_{j,t}}(x)| dx dt \to 0$$

hence there exists a subsequence $\varphi_{F_{i,t}} \to \varphi_{F_t}$ in $L^1(\Omega)$ a.e. t. Since (1.28) holds for each f_j ,

$$\int_{\Omega} |Df| = \lim_{j \to 0} \int_{\Omega} |Df_j| = \lim_{j \to 0} \int_{-\infty}^{\infty} \int_{\Omega} |D\varphi_{F_{j,t}}| \, dt$$

one apply Fatou w.r.t. t

$$\geq \int_{-\infty}^{\infty} \left(\liminf_{j \to 0} \int_{\Omega} |D\varphi_{F_{j,t}}| \right) dt$$

then apply semicontinuity (1.7) for BV function

$$\geq \int_{-\infty}^{\infty} \int_{\Omega} |D\varphi_{F_t}| \, dt$$

and we conclude (1.28) for $f \in C^{\infty}(\Omega)$. But notice, we've really only used (1.29) in the above argument. Hence for any $f \in BV(\Omega)$, by Theorem 1.1.2, one may choose $\{f_j\} \subset C^{\infty}(\Omega)$ s.t. (1.29) holds. Then run the argument again, we conclude (1.28) for $f \in BV(\Omega)$.

To show for smooth approximation of sets, one needs Sard's lemma for smooth boundary construction.

Lemma 1.1.5 (Sard's Lemma). $f: \mathbb{R}^n \to \mathbb{R}^m$ C^k where $k \ge \max\{n-m+1, 1\}$. Let

$$X := \left\{ x \in \mathbb{R}^n \mid Jf(x) := \begin{bmatrix} \nabla f_1 \\ \cdots \\ \nabla f_m \end{bmatrix} (x) \text{ has rank } < m \right\}$$

denote the set of critical points of f. Then the image f(X) has Lebesgue measure 0 in \mathbb{R}^m . In particular, if m=1, then given C^k map $f:\mathbb{R}^n\to\mathbb{R}$ for $k\geq n$, one has

$$\partial \{x \in \mathbb{R}^n \mid f(x) < t\} = \{x \in \mathbb{R}^n \mid f(x) = t\} \quad C^k \text{ boundary for a.e. } t \in \mathbb{R}$$
 (1.30)

Theorem 1.1.7 (Smooth approximation of Caccioppoli Set). For $E \subset \mathbb{R}^n$ bounded Caccioppoli set, there exists E_j sets with C^{∞} boundary s.t.

$$\int |\varphi_{E_j} \to \varphi_E| dx \to 0 \qquad \int |D\varphi_E| = \lim_{j \to 0} \int |D\varphi_{E_j}| \tag{1.31}$$

Proof. Let η_{ε} be positive symmetric mollifier. For E Caccioppoli, one look at the mollification $(\varphi_{E})_{\varepsilon} = \eta_{\varepsilon} * \varphi_{E}$. Since $(\varphi_{E})_{\varepsilon}$ smooth and compactly supported, indeed $(\varphi_{E})_{\varepsilon} \in BV(\mathbb{R}^{n})$. Observe $0 \leq (\varphi_{E})_{\varepsilon} \leq 1$ as inherited from φ_{E} , and denoting the set $E_{\varepsilon,t} := \{x \in \mathbb{R}^{n} \mid (\varphi_{E})_{\varepsilon}(x) < t\}$, one has, by Coarea formula (1.28)

$$\int |D(\varphi_E)_{\varepsilon}| = \int_0^1 \left(\int |D\,\varphi_{E_{\varepsilon,t}}| \right) dt \tag{1.32}$$

But since E is bounded Caccioppoli, Corollary 1.1.1 gives $\varphi_E \in BV(\mathbb{R}^n)$. One may thus apply global mollification approximation (1.11)

$$\int |D\varphi_E| = \lim_{\varepsilon \to 0} \int |D(\varphi_E)_{\varepsilon}| = \lim_{\varepsilon \to 0} \int_0^1 \left(\int |D\varphi_{E_{\varepsilon,t}}| \right) dt$$

One now aims for the following claim. One wish to show for any 0 < t < 1,

$$\int |\varphi_{E_{\varepsilon,t}^c} - \varphi_E| \, dx \le \frac{1}{\min\{1 - t, \, t\}} \int |(\varphi_E)_{\varepsilon} - \varphi_E| \, dx \tag{1.33}$$

To do so, observe

$$(\varphi_E)_{\varepsilon} - \varphi_E \ge t \quad on \ E_{\varepsilon,t}^c \setminus E$$

$$\varphi_E - (\varphi_E)_{\varepsilon} \ge 1 - t \quad on \ E \setminus E_{\varepsilon,t}^c$$

Hence

$$\int |(\varphi_E)_{\varepsilon} - \varphi_E| \, dx = \int_{E_{\varepsilon,t}^c \setminus E} |(\varphi_E)_{\varepsilon} - \varphi_E| \, dx + \int_{E \setminus E_{\varepsilon,t}^c} |(\varphi_E)_{\varepsilon} - \varphi_E| \, dx$$

$$\geq t \, |E_{\varepsilon,t}^c \setminus E| + (1-t) \, |E \setminus E_{\varepsilon,t}^c| \geq \min\{1-t, t\} \int |\varphi_{E_{\varepsilon,t}^c} - \varphi_E| \, dx$$

which gives (1.33). By mollification, since $\varphi_E \in L^1(\mathbb{R}^n) \subset BV(\mathbb{R}^n)$, $\|(\varphi_E)_{\varepsilon} - \varphi_E\|_{L^1} \to 0$, hence RHS of (1.33) converges to 0 as $\varepsilon \to 0$ for each t, implying $\|\varphi_{E^c_{\varepsilon,t}} - \varphi_E\|_{L^1} \to 0$ for each t. But since E bounded, $E^c_{\varepsilon,t} = \{x \mid (\varphi_E)_{\varepsilon} \ge t\}$ is also bounded for any 0 < t < 1. And because $\partial E^c_{\varepsilon,t} = \{x \mid (\varphi_E)_{\varepsilon} = t\}$ is smooth, from example 1.1.2, one has $\varphi_{E^c_{\varepsilon,t}} \in BV(\mathbb{R}^n)$. Hence for 0 < t < 1, one has semicontinuity (1.7)

$$\liminf_{\varepsilon \to 0} \int |D\varphi_{E_{\varepsilon,t}^c}| \geq \int |D\varphi_E|$$

But because $\operatorname{supp} D\varphi_{E_{\varepsilon,t}^c} \subset \partial E_{\varepsilon,t}^c$, under total variation, one has $\int |D\varphi_{E_{\varepsilon,t}^c}| = \int |D\varphi_{E_{\varepsilon,t}}|$. So

$$\int |D\varphi_E| = \lim_{\varepsilon \to 0} \int |D(\varphi_E)_{\varepsilon}| = \lim_{\varepsilon \to 0} \int_0^1 \left(\int |D\varphi_{E_{\varepsilon,t}}| \right) dt$$

By Fatou w.r.t. t

$$\geq \int_0^1 \left(\liminf_{\varepsilon \to 0} \int |D\varphi_{E_{\varepsilon,t}}| \right) \, dt = \int_0^1 \left(\liminf_{\varepsilon \to 0} \int |D\varphi_{E_{\varepsilon,t}}^c| \right) \, dt \geq \int |D\varphi_E|$$

 $\text{now combining } \begin{cases} \liminf_{\varepsilon \to 0} \int |D\varphi_{E_{\varepsilon,t}^c}| \geq \int |D\varphi_E| \\ \int_0^1 \left(\liminf_{\varepsilon \to 0} \int |D\varphi_{E_{\varepsilon,t}^c}| \right) \, dt = \int |D\varphi_E| \end{cases} \text{one must have for a.e. } 0 < t < 1$

$$\liminf_{\varepsilon \to 0} \int |D\varphi_{E_{\varepsilon,t}^c}| = \int |D\varphi_E|$$

Now one is ready to apply Sard's lemma (1.30) to the set $\partial E_{\varepsilon,t}^c = \{x \in \mathbb{R}^n \mid (\varphi_E)_{\varepsilon} = t\}$, resulting in smooth boundary of $\partial E_{\varepsilon,t}^c$ for a.e. 0 < t < 1. Take one such t. we have obtained

$$\begin{cases} \partial E_{\varepsilon,t}^c & smooth \\ \left\| \varphi_{E_{\varepsilon,t}^c} - \varphi_E \right\|_{L^1} \to 0 \\ \lim \inf_{\varepsilon \to 0} \int |D\varphi_{E_{\varepsilon,t}^c}| = \int |D\varphi_E| \end{cases}$$

Take subsequence ε_j s.t. $\varepsilon_j \to 0$ as $j \to \infty$ and $\int |D\varphi_E| = \lim_{j \to 0} \int |D\varphi_{E_{\varepsilon_j,t}}^c|$. Define $E_j := E_{\varepsilon_j,t}^c$.

Remark 1.1.7. Notice E_j bounded and smooth ensures $\varphi_{E_j} \subset BV(\mathbb{R}^n)$, and E bounded Caccioppoli ensures $\varphi_E \in BV(\mathbb{R}^n)$. Hence one may apply (1.8), so that for any $A \subset \mathbb{R}^n$ open

$$\int_{A} |D\varphi_{E}| = \lim_{j \to 0} \int_{A} |D\varphi_{E_{j}}|$$

1.1.5 Isoperimetric Inequality

One shall first recall from Sobolev Space the GNS inequality as the tool from (1.19) and Poincaré Lemma

Lemma 1.1.6 (GNS Inequality). $1 \le p < n$. Then there exists C = C(n, p) s.t.

$$||f||_{L^{\frac{np}{n-p}}(\mathbb{R}^n)} \le C ||Df||_{L^p(\mathbb{R}^n)} \qquad \forall f \in C_0^1(\mathbb{R}^n)$$
 (1.34)

Lemma 1.1.7 (Poincaré). $\Omega \subset \mathbb{R}^n$ open, bounded, connected. $\partial \Omega$ Lipschitz continuous. $1 \leq p \leq \infty$. There there exists $C = C(n, p, \Omega)$ s.t.

$$\left\| f - \oint_{\Omega} f \, dy \right\|_{L^{p}(\Omega)} \le C \left\| Df \right\|_{L^{p}(\Omega)} \qquad \forall f \in W^{1,p}(\Omega)$$

$$\tag{1.35}$$

Corollary 1.1.2. There exists $C_1 = C_1(n)$ and $C_2 = C_2(n)$ s.t.

$$||f||_{L^{\frac{n}{n-1}}(\mathbb{R}^n)} \le C_1 ||Df||_{L^1(\mathbb{R}^n)} \qquad \forall f \in C_0^{\infty}(\mathbb{R}^n)$$
 (1.36)

$$||f - f_{\rho}||_{L^{\frac{n}{n-1}}(B_{\rho})} \le C_2 ||Df||_{L^1(B_{\rho})} \qquad \forall f \in C^{\infty}(B_{\rho})$$
(1.37)

where $f_{\rho} := \int_{B_{\alpha}} f \, dy = \frac{1}{|B_{\alpha}|} \int_{B_{\alpha}} f \, dy$.

Proof. Apply (1.34) with p=1 yields (1.36). Apply (1.19) with $\Omega=B_{\rho}$, p=1 and $q=\frac{n}{n-1}$ gives

$$\|f - f_{\rho}\|_{L^{\frac{n}{n-1}}(B_{\rho})} \le C \|f - f_{\rho}\|_{W^{1,1}(B_{\rho})} = C \left(\|f - f_{\rho}\|_{L^{1}(B_{\rho})} + \|Df\|_{L^{1}(B_{\rho})} \right) \le C_{2} \|Df\|_{L^{1}(B_{\rho})}$$

where the last inequality uses (1.35).

One immediately has Sobolev Inequalities for BV function.

Theorem 1.1.8 (Sobolev for BV). There exists $C_1 = C_1(n)$ and $C_2 = C_2(n)$ s.t.

$$||f||_{L^{\frac{n}{n-1}}(\mathbb{R}^n)} \le C_1 \int |Df| \quad \forall f \in BV(\mathbb{R}^n) \text{ and supp } f \text{ compact}$$
 (1.38)

$$||f - f_{\rho}||_{L^{\frac{n}{n-1}}(B_{\rho})} \le C_2 \int_{B_{\rho}} |Df| \qquad \forall f \in BV(B_{\rho})$$
 (1.39)

where $f_{\rho} := \int_{B_{\rho}} f \, dy = \frac{1}{|B_{\rho}|} \int_{B_{\rho}} f \, dy$.

Proof. One mimic the proof in (1.23). For $f \in BV(\mathbb{R}^n)$ with supp f compact, by smooth approximation Theorem 1.1.2, there exists $\{f_j\} \subset C_0^\infty(\mathbb{R}^n)$ with uniform compact support s.t. $\|f_j - f\|_{L^1(\mathbb{R}^n)} \to 0$ and $\int |Df| = \lim_{j \to \infty} \int |Df_j| dx$. Now Df_j is uniformly bounded in L^1 on \mathbb{R}^n , say by M. So one has from (1.36), $\|f_j\|_{L^{\frac{n}{n-1}}(\mathbb{R}^n)} \leq C_1 \|Df_j\|_{L^1(\mathbb{R}^n)} \leq C_1 M$ uniformly bounded. Since $L^{\frac{n}{n-1}}$ is Reflexive, a uniformly bounded sequence in $L^{\frac{n}{n-1}}$ has a weakly convergent subsequence by Banach Alaoglu, say $f_j \to f_0$ in $L^{\frac{n}{n-1}}$. But with uniform compact support for f_j and f_0 , one has $f_j \to f_0$ in L^1 by Hölder. Since we already know $f_j \to f$ in L^1 , $f_0 = f$. Now by lower semicontinuity of weak convergence

$$\left(\int |f|^{\frac{n}{n-1}} \, dx \right)^{\frac{n-1}{n}} \leq \lim_{j \to \infty} \left(\int |f_j|^{\frac{n}{n-1}} \, dx \right)^{\frac{n-1}{n}} \leq C_1 \lim_{j \to \infty} \|Df_j\|_{L^1(\mathbb{R}^n)} = C_1 \int |Df|$$

thus we've proved (1.38). For $f \in BV(B_{\rho})$, by smooth approximation Theorem 1.1.2, there exists $\{f_j\} \subset C^{\infty}(B_{\rho})$ s.t. $\|f_j - f\|_{L^1(B_{\rho})} \to 0$ and $\int_{B_{\rho}} |Df| = \lim_{j \to \infty} \int_{B_{\rho}} |Df_j| dx$, so $\|Df_j\|_{L^1(B_{\rho})}$ is uniformly bounded, and by (1.37), $\{f_j - (f_j)_{\rho}\}$ is uniformly bounded in $L^{\frac{n}{n-1}}(B_{\rho})$. Hence there exists weakly convergent subsequence $f_j - (f_j)_{\rho} \rightharpoonup f_0$ in $L^{\frac{n}{n-1}}(B_{\rho})$, thus since B_{ρ} bounded, $f_j - (f_j)_{\rho} \rightharpoonup f_0$ weakly in $L^1(B_{\rho})$ via Hölder. But $f_j - (f_j)_{\rho} \to f - f_{\rho}$ in L^1 , so $f - f_{\rho} = f_0$. Again by the lower semicontinuity one has (1.39)

$$\left(\int_{B_{\rho}} |f - f_{\rho}|^{\frac{n}{n-1}} dx \right)^{\frac{n-1}{n}} \le \lim_{j \to \infty} \left(\int_{B_{\rho}} |f_{j} - (f_{j})_{\rho}|^{\frac{n}{n-1}} dx \right)^{\frac{n-1}{n}} \le C_{2} \lim_{j \to \infty} \|Df_{j}\|_{L^{1}(B_{\rho})} = C_{2} \int_{B_{\rho}} |Df|^{\frac{n}{n-1}} dx$$

Theorem 1.1.9 (Isoperimetric Inequality). For $E \subset \mathbb{R}^n$ bounded Caccioppoli, there exists $C_1 = C_1(n)$ and $C_2 = C_2(n)$ s.t. for any open ball $B_{\rho} \subset \mathbb{R}^n$ with radius ρ

$$|E|^{\frac{n-1}{n}} \le C_1 \int |D\varphi_E| \tag{1.40}$$

$$\min\{|E \cap B_{\rho}|, |E^{c} \cap B_{\rho}|\}^{\frac{n-1}{n}} \le C_{2} \int_{B_{\rho}} |D\varphi_{E}|$$
(1.41)

Proof. Since E bounded Caccioppoli, $\varphi_E \in BV(\mathbb{R}^n)$ and $\operatorname{supp}\varphi_E = \overline{E}$ is compact, one apply (1.38) and so (1.40) holds. Now let $f = \varphi_E$, then $f_\rho = \frac{1}{|B_\rho|} \int_{B_\rho} \varphi_E = \frac{|E \cap B_\rho|}{|B_\rho|}$, so

$$\begin{split} \int_{B_{\rho}} |f - f_{\rho}|^{\frac{n}{n-1}} \, dx &= \int_{B_{\rho} \cap E} |1 - f_{\rho}|^{\frac{n}{n-1}} \, dx + \int_{B_{\rho} \cap E^{c}} |f_{\rho}|^{\frac{n}{n-1}} \, dx \\ &= |B_{\rho} \cap E| \left(\frac{|E^{c} \cap B_{\rho}|}{|B_{\rho}|} \right)^{\frac{n}{n-1}} + |B_{\rho} \cap E^{c}| \left(\frac{|E \cap B_{\rho}|}{|B_{\rho}|} \right)^{\frac{n}{n-1}} \\ &\geq \min\{|B_{\rho} \cap E|, \, |B_{\rho} \cap E^{c}|\} \left(\left(1 - \frac{|E \cap B_{\rho}|}{|B_{\rho}|} \right)^{\frac{n}{n-1}} + \left(\frac{|E \cap B_{\rho}|}{|B_{\rho}|} \right)^{\frac{n}{n-1}} \right) \end{split}$$

Hence taking $\frac{n-1}{n}$ power gives

$$\left(\int_{B_{\rho}} |f - f_{\rho}|^{\frac{n}{n-1}} dx\right)^{\frac{n-1}{n}} \ge \min\{|B_{\rho} \cap E|, |B_{\rho} \cap E^{c}|\}^{\frac{n-1}{n}} \left(\left(1 - \frac{|E \cap B_{\rho}|}{|B_{\rho}|}\right)^{\frac{n}{n-1}} + \left(\frac{|E \cap B_{\rho}|}{|B_{\rho}|}\right)^{\frac{n}{n-1}}\right)^{\frac{n}{n-1}}$$

Notice for any $\theta \ge 1$ and $a, b \ge 0$, one has elementary inequality $(a+b)^{\theta} \le 2^{\theta} (a^{\theta} + b^{\theta})$. Letting $\theta = \frac{n}{n-1}$, $a = 1 - \frac{|E \cap B_{\rho}|}{|B_{\rho}|}$ and $b = \frac{|E \cap B_{\rho}|}{|B_{\rho}|}$, so

$$\left(\left(1 - \frac{|E \cap B_{\rho}|}{|B_{\rho}|} \right)^{\frac{n}{n-1}} + \left(\frac{|E \cap B_{\rho}|}{|B_{\rho}|} \right)^{\frac{n}{n-1}} \right)^{\frac{n-1}{n}} \geq \left(2^{\frac{-n}{n-1}} \cdot 1 \right)^{\frac{n-1}{n}} = \frac{1}{2}$$

independent of size of B_{ρ} . Hence apply (1.39) one has (1.41).

1.2 Traces of BV Function

1.2.1 preliminary lemmas

Lemma 1.2.1 (Lebesgue Differentiation). $f \in L^1(\mathbb{R}^n)$. Then for a.e. $x \in \mathbb{R}^n$

$$\lim_{\rho \to 0} \frac{1}{\rho^n} \int_{B_{\rho}} |f(x+y) - f(x)| \, dy = 0 \tag{1.42}$$

One need Zorn's lemma for a Covering argument.

Lemma 1.2.2 (Zorn's Lemma). One needs a few definitions to make sense of Zorn's lemma.

- A set P is partially ordered by \leq if
 - 1. \leq is reflexive: $x \leq x$ for any $x \in P$
 - 2. \leq is anti-symmetric: $x \leq y$ and $y \leq x$ implies x = y
 - 3. \leq is transitive: $x \leq y$ and $y \leq z$ implies $x \leq z$

Note not all elements in P are required to be comparable. If a subset $S \subset P$ that inherits the partial order \leq has every pair of elements comparable, S is called totally ordered.

- An element $m \in P$ with partial order \leq is maximal if there does not exist $s \in P$ s.t. $s \neq m$ and $m \leq s$. Note 'maximal' here does not need m to be comparable with all other elements in P.
- Given subset $S \subset P$ that inherits the partial order \leq . An element $u \in P$ is an upper bound of S if for any $s \in S$, $s \leq u$.

Zorn's Lemma claims: Given a nonempty partially order set (P, \leq) . If every nonempty subset $S \subset P$ that inherits the order \leq and is totally bounded has an upper bound $u \in P$, then P contains at least one maximal element m with order \leq .

Lemma 1.2.3 (Covering Lemma). $A \subset \mathbb{R}^n$. $\rho: A \to (0,1)$. Then there exists countable set $\{x_i\} \subset A$ s.t.

$$B_{\rho(x_i)}(x_i) \cap B_{\rho(x_j)}(x_j) = \varnothing \quad \text{for } i \neq j$$
 (1.43)

$$A \subset \bigcup_{i=1}^{\infty} B_{3\rho(x_i)}(x_i) \tag{1.44}$$

Proof. For $k \geq 1$, let $A_k := \{x \in A \mid \frac{1}{2^k} \leq \rho(x) < \frac{1}{2^{k-1}}\}$. One wish to define a sequence of sets L_k for each k. If $A_k = \varnothing$, let $L_k := \varnothing$. WLOG, assume $A_1 \neq \varnothing$. Let $\mathcal{L}_1 := \{L \subset A_1 \mid \forall x, y \in L, x \neq y, B_{\rho(x)}(x) \cap B_{\rho(y)}(y) = \varnothing\}$. For nonempty A_1 , \mathcal{L}_1 is indeed nonempty because both the empty set and singletons are elements of \mathcal{L}_1 . Now order \mathcal{L}_1 with inclusion. For any subcollection of \mathcal{L}_1 totally ordered with inclusion, indeed their union is element of \mathcal{L}_1 and is upper bounded. Hence \mathcal{L}_1 contains a maximal element via Zorn's lemma, call it L_1 . Now assume for L_1, \dots, L_k , one obtain L_{k+1} via taking the maximal element of the following collection ordered with inclusion

$$\mathcal{L}_{k+1} := \{ L \subset A_{k+1} \mid \forall \ x, \ y \in L_1 \cup L_2 \cup \dots \cup L_k \cup L, \ x \neq y, \ B_{\rho(x)}(x) \cap B_{\rho(y)}(y) = \varnothing \}$$

Notice $\varnothing \in \mathcal{L}_{k+1}$ is always true so Zorn's lemma applies. L_{k+1} could be empty even if A_{k+1} is nonempty. Moreover, for each L_k , for any $M \subset \mathbb{R}^n$ compact, $M \cap L_k$ must contain finitely many elements otherwise $\{B_{\rho(x)}(x)\}_{x \in M \cap L_k}$ as open cover of $M \cap \overline{L}_k$ does not have finite subcover, contradicting compactness of $M \cap \overline{L}_k$. Hence let M truncate collections of balls $\{\overline{B}_j\}$ with radius $j \in \mathbb{N}$, so each $\overline{B}_j \cap L_k$ is finite for any j. Thus pass j to ∞ , L_k is countable. So $L := \bigcup_{k=1}^{\infty} L_k$ is countable set satisfying (1.43). To see (1.44), take any $z \in A = \bigcup_{k=1}^{\infty} A_k$. There must exist k s.t. $z \in A_k$. Now since L_k is maximal element of \mathcal{L}_k , $L_k \cup \{z\} \notin \mathcal{L}_k$. Hence there must exist $x \in L_1 \cup \cdots \cup L_k$ s.t. $x \neq z$ and $B_{\rho(x)}(x) \cap B_{\rho(z)}(z) \neq \varnothing$. Note by definition of A_k , $\frac{1}{2^k} \leq \rho(z) < \frac{1}{2^{k-1}}$, and by definition of $L_1 \cup \cdots \cup L_k$, $\frac{1}{2^k} \leq \rho(x) < 1$. Hence $\frac{1}{2}\rho(z) < \rho(x)$. But the balls $B_{\rho(x)}(x) \cap B_{\rho(z)}(z) \neq \varnothing$, so $z \in B_{3\rho(x)}(x)$.

Using the covering lemma, one obtains a boundary differentiation lemma analogous to Lemma 1.2.1.

- $B_r(x) := \{z \in \mathbb{R}^n \mid |x z| < r\}$ ball with center x radius r in \mathbb{R}^n
- $\mathscr{B}_{\rho}(y) := \{t \in \mathbb{R}^{n-1} \mid |y-t| < \rho\}$ ball with center y radius ρ in \mathbb{R}^{n-1}
- Let $\mathbb{R}^n_+ := \{x \in \mathbb{R}^n \mid x_n > 0\}, y \in \mathbb{R}^{n-1} = \partial \mathbb{R}^n_+, \rho > 0$. Upper cylinder with center y radius and height ρ

$$C_{\rho}^{+}(y) := \{(z,t) \in \mathbb{R}^{n-1} \times (0,\infty) \mid |y-z| < \rho, \ 0 < t < \rho\} = \mathscr{B}_{\rho}(y) \times (0,\rho)$$

Lemma 1.2.4. μ positive Radon measure on \mathbb{R}^n_+ with $\mu(\mathbb{R}^n_+) < \infty$. Then for H_{n-1} -a.e. $y \in \mathbb{R}^{n-1} = \partial \mathbb{R}^n_+$,

$$\lim_{\rho \to 0} \frac{1}{\rho^{n-1}} \mu(C_{\rho}^{+}(y)) = 0 \tag{1.45}$$

Proof. It suffices to show $\forall k > 0$, $A_k := \{ y \in \mathbb{R}^{n-1} \mid \limsup_{\rho \to 0} \frac{1}{\rho^{n-1}} \mu(C_{\rho}^+(y)) > \frac{1}{k} \}$ is of H_{n-1} measure zero. Given $\varepsilon > 0$. Note for any $y \in A_k$, there exists $\rho_y < \varepsilon$ s.t.

$$\frac{1}{\rho_y^{n-1}}\mu(C_{\rho_y}^+(y)) > \frac{1}{2k} \iff \rho_y^{n-1} < 2k\,\mu(C_{\rho_y}^+(y))$$

Choose $\{y_j\} \subset A_k$ as in Lemma 1.2.3 with $\rho(y_j) = \rho_{y_j}$ so that $\mathscr{B}_{\rho_{y_j}}(y_j)$ are disjoint and $A_k \subset \bigcup_{j=1}^{\infty} \mathscr{B}_{3\rho_{y_j}}(y_j)$.

$$H_{n-1}(A_k) \le \sum_{j=1}^{\infty} H_{n-1}(\mathcal{B}_{3\rho_{y_j}}(y_j)) = \omega_{n-1} \sum_{j=1}^{\infty} (3\rho_{y_j})^{n-1} < \omega_{n-1} 3^{n-1} 2k \sum_{j=1}^{\infty} \mu(C_{\rho_{y_j}}^+(y_j))$$

But $C_{\rho_{y_j}}^+(y_j) = \mathscr{B}_{\rho_{y_j}}(y_j) \times (0, \, \rho_{y_j})$ are disjoint, and since $\rho_{y_j} < \varepsilon$ uniformly in j

$$H_{n-1}(A_k) \le \omega_{n-1} 3^{n-1} 2k \, \mu \{ x \in \mathbb{R}^n_+ \mid 0 < x_n < \varepsilon \}$$

for any $\varepsilon > 0$. But $\mu(\mathbb{R}^n_+) < \infty$, so $\mu\{x \in \mathbb{R}^n_+ \mid 0 < x_n < \varepsilon\} \to 0$ as $\varepsilon \to 0$, hence $H_{n-1}(A_k) = 0 \ \forall k > 0$.

1.2.2 Existence and Property of Trace on C_R

One first work with upper cylinder $C_R^+ := C_R^+(0) = \mathscr{B}_R \times (0, R)$. Also denote $C_R := \mathscr{B}_R \times (-R, R)$.

Theorem 1.2.1 (Construction of Trace). $f \in BV(C_R^+)$. There exists $f^+ \in L^1(\mathcal{B}_R)$ s.t. for H_{n-1} -a.e. $y \in \mathcal{B}_R$

$$\lim_{\rho \to 0} \frac{1}{\rho^n} \int_{C_{\rho}^+(y)} |f(z) - f^+(y)| \, dz = 0 \tag{1.46}$$

and for any $g \in C_0^1(C_R; \mathbb{R}^n)$, one has

$$\int_{C_{R}^{+}} f \operatorname{div} g \, dx = -\int_{C_{R}^{+}} \langle g, Df \rangle - \int_{\mathscr{B}_{R}} f^{+} \, g_{n} \, dH_{n-1} \tag{1.47}$$

Definition 1.2.1 (Trace of BV Function). $f \in BV(C_R^+)$. $f^+ \in L^1(\mathscr{B}_R)$ in Theorem 1.2.1 is trace of f on \mathscr{B}_R . Indeed (1.46) implies for H_{n-1} -a.e. $y \in \mathscr{B}_R$

$$f^{+}(y) = \lim_{\rho \to 0} \frac{1}{|C_{\rho}^{+}(y)|} \int_{C_{\rho}^{+}(y)} f(z) dz$$
 (1.48)

Proof. First suppose $f \in C^{\infty}(C_R^+)$. Then for any $0 < \varepsilon < R$, define $f^{\varepsilon} : \mathscr{B}_R \to \mathbb{R}$ as $f^{\varepsilon}(y) := f(y, \varepsilon)$. Hence denoting $Q_{\varepsilon',\varepsilon} := \mathscr{B}_R \times (\varepsilon', \varepsilon)$ for $0 \le \varepsilon' < \varepsilon \le R$, one has from FTC

$$\int_{\mathcal{B}_R} |f^{\varepsilon}(y) - f^{\varepsilon'}(y)| dH_{n-1}(y) \le \int_{\mathcal{B}_R} \int_{\varepsilon'}^{\varepsilon} |D_n f(y, t)| dt dH_{n-1}(y) = \int_{Q_{\varepsilon', \varepsilon}} |D_n f| dx$$
 (1.49)

Since f smooth, RHS Cauchy in ε gives LHS Cauchy in ε , thus $\exists f^+ \in L^1(\mathscr{B}_R)$ s.t. $\|f^\varepsilon - f^+\|_{L^1(\mathscr{B}_R)} \to 0$. Take any $g \in C^1_0(C_R; \mathbb{R}^n)$, Since f smooth, for any $0 < \varepsilon < R$, and let $\nu = (\nu^1, \cdots, \nu^n)$ denote unit normal w.r.t. $\mathscr{B}_R \times \{x_n = \varepsilon\}$ and pointing downwards to \mathbb{R}^{n-1} , i.e., $\nu = (0, \cdots, 0, -1)$

$$\int_{Q_{\varepsilon,R}} f \operatorname{div} g \, dx = -\int_{Q_{\varepsilon,R}} \langle g, Df \rangle + \int_{\mathscr{B}_R \times \{x_n = \varepsilon\}} f(y, \, \varepsilon) \, g(y, \, \varepsilon) \cdot \nu \, dH_{n-1}(y)$$

$$= -\int_{Q_{\varepsilon,R}} \langle g, Df \rangle - \int_{\mathscr{B}_R \times \{x_n = \varepsilon\}} f(y, \, \varepsilon) \, g_n(y, \, \varepsilon) \, dH_{n-1}(y)$$

$$= -\int_{Q_{\varepsilon,R}} \langle g, Df \rangle - \int_{\mathscr{B}_R} f^{\varepsilon}(y) \, g_n^{\varepsilon}(y) \, dH_{n-1}(y)$$

letting $\varepsilon \to 0$, one obtain (1.47) for f smooth. To see for (1.46), for any $y \in \mathscr{B}_R$ and $0 < \rho < R$ s.t. $C_\rho^+(y) \subset C_R^+$

$$\int_{C_{\rho}^{+}(y)} |f(z) - f^{+}(y)| dz = \int_{\mathscr{B}_{\rho}(y)} \int_{0}^{\rho} |f(\eta, t) - f^{+}(y)| dt dH_{n-1}(\eta)$$

$$\leq \int_{\mathscr{B}_{\rho}(y)} \int_{0}^{\rho} |f(\eta, t) - f^{+}(\eta)| dt dH_{n-1}(\eta) + \int_{\mathscr{B}_{\rho}(y)} \int_{0}^{\rho} |f^{+}(\eta) - f^{+}(y)| dt dH_{n-1}(\eta)$$

$$= \int_{\mathscr{B}_{\rho}(y)} \int_{0}^{\rho} |f(\eta, t) - f^{+}(\eta)| dt dH_{n-1}(\eta) + \rho \int_{\mathscr{B}_{\rho}(y)} |f^{+}(\eta) - f^{+}(y)| dH_{n-1}(\eta)$$

notice upon multiplying by ρ^{-n} , the second term goes to 0 for H_{n-1} -a.e. y due to Lebesgue Differentiation 1.2.1. For the first term, use Fubini and mimic (1.49)

$$\int_{\mathscr{B}_{\rho}(y)} \int_{0}^{\rho} |f(\eta, t) - f^{+}(\eta)| dt dH_{n-1}(\eta) = \int_{0}^{\rho} \int_{\mathscr{B}_{\rho}(y)} |f^{t}(\eta) - f^{+}(\eta)| dH_{n-1}(\eta) dt$$

$$\leq \int_{0}^{\rho} \int_{\mathscr{B}_{\rho}(y)} \int_{0}^{t} |D_{n}f(\eta, \xi)| d\xi dH_{n-1}(\eta) dt$$

$$\leq \int_{0}^{\rho} \int_{Q_{0,t}(y)} |Df| dx dt \leq \rho \int_{C_{\rho}^{+}(y)} |Df|$$

now multiplying by ρ^{-n} and notice |Df| is Radon measure on C_R^+ that is finite, one may use (1.45) with $\mu = |Df|$. Hence for H_{n-1} -a.e. $y \in \mathscr{B}_R$

$$\frac{1}{\rho^n} \int_{C_{\delta}^+(y)} |f(z) - f^+(y)| \, dz \le \frac{1}{\rho^{n-1}} \int_{C_{\delta}^+(y)} |Df| + \frac{1}{\rho^{n-1}} \int_{\mathscr{B}_{\delta}(y)} |f^+(\eta) - f^+(y)| \, dH_{n-1}(\eta) \to 0$$

and one concludes (1.46) for f smooth. In general for $f \in BV(C_R^+)$, approximate using $\{f_j\} \subset C^{\infty}(C_R^+)$ via Theorem 1.1.2. Recall remark (1.18), for any j, given n and H_{n-1} -a.e. $y \in \mathscr{B}_R$

$$\lim_{\rho \to 0} \frac{1}{\rho^n} \int_{C_{\rho}^+(y)} |f(z) - f_j(z)| \, dz = 0$$

Hence combining with f_j satisfying (1.46)

$$\frac{1}{\rho^n} \int_{C_{\rho}^+(y)} |f(z) - f_j^+(y)| \, dz \le \frac{1}{\rho^n} \int_{C_{\rho}^+(y)} |f(z) - f_j(z)| \, dz + \frac{1}{\rho^n} \int_{C_{\rho}^+(y)} |f_j(z) - f_j^+(y)| \, dz \to 0$$

for any j. Thus by uniqueness of L^1 limit, all traces f_j^+ coincide H_{n-1} -a.e. $y \in \mathscr{B}_R$. So define $f^+ := f_j^+$ for any such trace. One has (1.46) for $f \in BV(C_R^+)$. Finally, since $||f - f_j||_{L^1(C_R^+)} \to 0$ and $\int_{C_R^+} |Df_j| \to \int_{C_R^+} |Df|$, one wish to deduce (1.47) from

$$\int_{C_D^+} f_j \operatorname{div} g \, dx = -\int_{C_D^+} \langle g, \, Df_j \rangle - \int_{\mathcal{B}_R} f_j^+ \, g_n \, dH_{n-1}$$

The first term converges due to $||f - f_j||_{L^1(C_R^+)} \to 0$ and the last term does not need to converge as $f^+ = f_j^+$ for any j. For the second term, note $\int_{C_R^+} |Df_j| \to \int_{C_R^+} |Df|$ convergence ensures uniform boundedness of $\int_{C_R^+} |Df_j|$. By Banach Alaoglu, the closed unit ball in norm is compact in the weak* topology. Hence identifying $\int_{C_R^+} |Df|$ as norm, there exists subsequence s.t. $Df_j \stackrel{*}{\rightharpoonup} Df$. But the vague topology convergence $\int_{C_R^+} \langle g, Df_j \rangle \to \int_{C_R^+} \langle g, Df \rangle$ is essentially the weak* topology convergence. Hence we're done.

Proposition 1.2.1 (Approximation in BV implies Approximation in Trace). $f \in BV(C_R^+)$. If $\{f_j\} \subset BV(C_R^+)$ s.t. $f_j \to f$ in $L^1(C_R^+)$ and

$$\lim_{j \to \infty} \int_{C_P^+} |Df_j| = \int_{C_P^+} |Df| \tag{1.50}$$

then

$$\lim_{j \to \infty} \int_{\mathcal{B}_R} |f_j^+ - f^+| \, dH_{n-1}(y) = 0 \tag{1.51}$$

Proof. For any $0 < \beta < R$, consider $Q_{0,\beta} := \mathscr{B}_R \times (0,\beta)$. Define $f_\beta : \mathscr{B}_R \to \mathbb{R}$ s.t. $f_\beta(y) := \frac{1}{\beta} \int_0^\beta f(y,t) dt$ for any $f \in BV(C_R^+)$. Then for a.e. β

$$\int_{\mathscr{B}_{R}} |f^{+}(y) - f_{\beta}(y)| dH_{n-1}(y) = \int_{\mathscr{B}_{R}} |f^{+}(y) - \frac{1}{\beta} \int_{0}^{\beta} f(y, t) dt | dH_{n-1}(y)
= \frac{1}{\beta} \int_{0}^{\beta} \int_{\mathscr{B}_{R}} |f^{+}(y) - f(y, t)| dH_{n-1}(y) dt \le \frac{1}{\beta} \int_{0}^{\beta} \int_{Q_{0, t}} |Df| dx dt \le \int_{Q_{0, \beta}} |Df| dx
(1.52)$$

where the last line uses (1.49), initially shown for smooth f. To make sense of (1.49) for $f \in BV(C_R^+)$, one precisely needs smooth approximation from Theorem 1.1.2 where $||f_{\varepsilon} \to f||_{L^1(C_R^+)}$ implies for a.e. t

$$\int_{\mathscr{B}_R} |f_{\varepsilon}^+(y) - f_{\varepsilon}(y, t)| dH_{n-1}(y) \rightarrow \int_{\mathscr{B}_R} |f^+(y) - f(y, t)| dH_{n-1}(y)$$

and $\int_{C_R^+} |Df_{\varepsilon}| \to \int_{C_R^+} |Df|$ implies via (1.8) $(\int_{\mathscr{B}_R \times \{t\}} |Df| = 0$ for a.e. t otherwise uncountably many disjoint summing up contradicts $f \in BV(C_R^+)$) that $\int_{Q_{0,t}} |Df_{\varepsilon}| \to \int_{Q_{0,t}} |Df|$. Hence for $\{f_j\} \subset BV(C_R^+)$ as assumed

$$\int_{\mathscr{B}_R} |f_j^+ - f^+| dH_{n-1}(y) \le \int_{\mathscr{B}_R} |f_j^+ - (f_j)_{\beta}| dH_{n-1}(y) + \int_{\mathscr{B}_R} |(f_j)_{\beta} - f_{\beta}| dH_{n-1}(y) + \int_{\mathscr{B}_R} |f_{\beta} - f^+| dH_{n-1}(y)$$
using (1.52)

$$\leq \int_{Q_{0,\beta}} |Df_j| + \int_{\mathscr{B}_R} |(f_j)_{\beta} - f_{\beta}| dH_{n-1}(y) + \int_{Q_{0,\beta}} |Df|$$

the middle term writes, using $||f_j - f||_{L^1(C_n^+)} \to 0$

$$\int_{\mathscr{B}_R} |(f_j)_{\beta} - f_{\beta}| dH_{n-1}(y) = \frac{1}{\beta} \int_0^{\beta} \int_{\mathscr{B}_R} |f_j(y, t) - f(y, t)| dH_{n-1}(y) dt = \frac{1}{\beta} \int_{C_R^+} |f_j - f| dx \to 0$$

Thus, since for a.e. β , $\int_{Q_{0,\beta}} |Df_j| \to \int_{Q_{0,\beta}} |Df|$, one has

$$\limsup_{j \to \infty} \int_{\mathcal{B}_R} |f_j^+ - f^+| dH_{n-1}(y) \le 2 \int_{Q_{0,\beta}} |Df|$$

for a.e. β . Thus using $f \in BV(C_R^+)$ so $\int_{Q_{0,\beta}} |Df| \to 0$ as $\beta \to 0$, one arrives at (1.51).

Note for $C_R^- := \mathscr{B}_R \times (-R, 0)$, one may similarly define $f^- \in L^1(\mathscr{B}_R)$ as trace for the function $f \in BV(C_R^-)$ via Theorem 1.2.1.

Proposition 1.2.2 (Extension Property for BV). For $f_1 \in BV(C_R^+)$ and $f_2 \in BV(C_R^-)$, let f^+ , $f^- \in L^1(\mathscr{B}_R)$ be their trace respectively. Then for $f: C_R = \mathscr{B}_R \times (-R, R) \to \mathbb{R}$ defined as $f:=\begin{cases} f_1 & \text{in } C_R^+ \\ f_2 & \text{in } C_R^- \end{cases}$, one has $f \in BV(C_R)$ and

$$\int_{\mathscr{B}_R} |f^+ - f^-| \, dH_{n-1}(y) = \int_{\mathscr{B}_R} |Df| \tag{1.53}$$

Proof. Note from (1.47) applied to f_1 and f_2 respectively, one has for any $g \in C_0^1(C_R; \mathbb{R}^n)$

$$\int_{C_R^+} f_1 \operatorname{div} g \, dx = -\int_{C_R^+} \langle g, \, Df_1 \rangle - \int_{\mathscr{B}_R} f^+ \, g_n \, dH_{n-1}$$

$$\int_{C_R^-} f_2 \operatorname{div} g \, dx = -\int_{C_R^-} \langle g, \, Df_2 \rangle + \int_{\mathscr{B}_R} f^- \, g_n \, dH_{n-1}$$

Notice on C_R^- , while deriving (1.47) for smooth f, one take unit normal $\nu = (0, \dots, 0, 1)$ pointing upwards to \mathbb{R}^{n-1} . Hence the last term involving g_n has opposite signs. One take sum of the above to obtain

$$\int_{C_R} f \operatorname{div} g \, dx = -\int_{C_R^+} \langle g, \, Df_1 \rangle - \int_{C_R^-} \langle g, \, Df_2 \rangle - \int_{\mathscr{B}_R} (f^+ - f^-) \, g_n \, dH_{n-1}$$
(1.54)

Now if require $|g| \leq 1$, one has

$$\left| \int_{C_R} f \operatorname{div} g \, dx \right| \le \int_{C_R^+} |Df_1| + \int_{C_R^-} |Df_2| + \int_{\mathscr{B}_R} |f^+| \, dH_{n-1} + \int_{\mathscr{B}_R} |f^-| \, dH_{n-1} < \infty$$

Hence $f \in BV(C_R)$. But on the other hand, by definition of distributional gradient Df

$$\int_{C_R} f \operatorname{div} g \, dx = -\int_{C_R} \langle g, Df \rangle = -\int_{C_R^+} \langle g, Df \rangle - \int_{C_R^-} \langle g, Df \rangle - \int_{\mathscr{B}_R} \langle g, Df \rangle$$

Notice f coincides with f_1 and f_2 respectively on C_R^+ and C_R^- , hence

$$\int_{C_R} f \operatorname{div} g \, dx = -\int_{C_R^+} \langle g, \, Df_1 \rangle - \int_{C_R^-} \langle g, \, Df_2 \rangle - \int_{\mathscr{B}_R} \langle g, \, Df \rangle \tag{1.55}$$

Now combining (1.54) and (1.55) gives

$$\int_{\mathscr{B}_R} (f^+ - f^-) g_n dH_{n-1} = \int_{\mathscr{B}_R} \langle g, Df \rangle$$

SO

$$\int_{\mathscr{B}_R} |Df| = \sup_{\substack{g \in C_0^1(C_R; \mathbb{R}^n) \\ |g| < 1}} |\int_{\mathscr{B}_R} \langle g, Df \rangle| = \sup_{\substack{g \in C_0^1(C_R; \mathbb{R}^n) \\ |g| < 1}} |\int_{\mathscr{B}_R} (f^+ - f^-) g_n dH_{n-1}| = \int_{\mathscr{B}_R} |f^+ - f^-| dH_{n-1}|$$

where the last equality holds by Riesz Representation. Hence we're done with (1.53).

1.2.3 Trace on Lipschitz Domains

One has systematic tools to reduce a Domain to C_R . Let $\Omega \subset \mathbb{R}^n$ open with $\partial \Omega$ Lipschitz.

• Since $\partial\Omega$ Lipschitz, for any $x_0 \in \partial\Omega$, there exists a neighborhood around x_0 s.t. the intersection of $\partial\Omega$ and the neighborhood is locally the graph of a Lipschitz function. Due to topology in \mathbb{R}^n , one is in fact free to choose the neighborhood as simple geometric objects. Via translation, one may first put $x_0 = 0$ as the origin, then rotate $\partial\Omega$ so that one may choose a cylinder $C(R) = \mathcal{B}_R \times (-\frac{R}{2}, \frac{R}{2})$ with \mathcal{B}_R radius R > 0 and height $\frac{R}{2}$, as well as a local Lipschitz function $w : \mathcal{B}_R \subset \mathbb{R}^{n-1} \to (-\frac{R}{2}, \frac{R}{2})$ where the local boundary and interior writes

$$\partial\Omega \cap C(R) = \{(y, t) \in C(R) = \mathcal{B}_R \times \left(-\frac{R}{2}, \frac{R}{2}\right) \mid t = w(y)\}$$

$$\tag{1.56}$$

$$\Omega \cap C(R) = \{ (y, t) \in C(R) \mid t > w(y) \}$$
(1.57)

• One may further flatten out the local boundary by introducing the variables

$$(y, \tau) = (y, t - w(y)) \in C_R^+ = \mathscr{B}_R \times (0, R)$$

hence for $f \in BV(\Omega \cap C(R))$, one may further define for $g \in BV(C_R^+)$ via

$$g(y, \tau) := f(y, w(y) + \tau) = f(y, t) \tag{1.58}$$

• Apply Theorem 1.2.1 to $g \in BV(C_R^+)$, there exists trace $g^+ \in L^1(\mathcal{B}_R)$. One define $f^+ \in L^1(\partial\Omega \cap C(R))$ for $f \in BV(\Omega \cap C(R))$ as the trace on local Lipschitz boundary via

$$f^{+}(y, w(y)) := g^{+}(y) \tag{1.59}$$

Theorem 1.2.2 (Construction of Trace). $\Omega \subset \mathbb{R}^n$ open and bounded with $\partial\Omega$ Lipschitz. $f \in BV(\Omega)$. Then there exists trace $\varphi \in L^1(\partial\Omega)$ s.t. for H_{n-1} -a.e. $x \in \partial\Omega$

$$\lim_{\rho \to 0} \frac{1}{\rho^n} \int_{B_\rho(x) \cap \Omega} |f(z) - \varphi(x)| \, dz = 0 \tag{1.60}$$

And for any $g \in C_0^1(\mathbb{R}^n; \mathbb{R}^n)$ one has, denoting ν outer unit normal w.r.t. $\partial\Omega$

$$\int_{\Omega} f \operatorname{div} g \, dx = -\int_{\Omega} \langle g, Df \rangle + \int_{\partial \Omega} \varphi \, \langle g, \nu \rangle \, dH_{n-1} \tag{1.61}$$

Proof. For $\Omega \subset \mathbb{R}^n$ bounded, $\partial \Omega$ is compact. Hence consider open cover $\{C_x(R)\}_{x \in \partial \Omega}$ where $C_x(R)$ is the cylinder s.t. upon translation and rotation, (1.56) and (1.57) holds for x positioned at the origin. There exists finite subcover $\{C_{x_i}(R_i)\}_{i=1}^N$. Given $f \in BV(\Omega)$, upon defining local trace $f_i^+ \in L^1(\partial \Omega \cap C_{x_i}(R_i))$ for each $f|_{C_{x_i}(R_i)}$ as in (1.59), one observe that on their overlaps they must agree H_{n-1} -a.e. due to uniqueness of L^1 limit. Hence $\varphi(x) := f_i^+(x)$ for i s.t. $x \in C_{x_i}(R_i)$ is a well-defined $L^1(\partial \Omega)$ function. Note for any $x \in \partial \Omega$, and for i s.t. $x \in C_{x_i}(R_i)$, there exists $\rho < \frac{R_i}{2}$ s.t. $B_{\rho}(x) \subset C_{x_i}(R_i)$. Hence (1.60) follows directly from (1.46) as a local behavior. To derive (1.61), one needs partition of unity. Denote $\Gamma_i := C_{x_i}(R_i)$ for $i \geq 1$ and $\Gamma_0 \subset \subset \Omega$ chosen s.t. $\overline{\Omega} \subset \bigcup_{i=0}^N \Gamma_i$ is open cover. One may choose a smooth partition of unity subordinate to $\{\Gamma_i\}_0^N$ s.t.

$$0 \le \phi_i \le 1, \quad \operatorname{supp} \phi_i \subset \Gamma_i, \quad \sum_{i=0}^N \phi_i = 1 \text{ in } \overline{\Omega}$$

Hence $f = \sum_{i=0}^N f\phi_i$ in Ω and $\varphi = \sum_{i=1}^N \varphi\phi_i$ on $\partial\Omega$ since $\Gamma_0 \subset\subset \Omega$. By definition of distributional derivative $D(f\phi_0) \in D'$ and that $\operatorname{supp} f\phi_0 \subset \Gamma_0 \subset\subset \Omega$, for any $g \in C^1_0(\mathbb{R}^n; \mathbb{R}^n)$

$$\int_{\Omega} f \,\phi_0 \operatorname{div} g \, dx = \int f \,\phi_0 \operatorname{div} g \, dx = -\int \langle g, \, D(f\phi_0) \rangle = -\int_{\Omega} \langle g, \, D(f\phi_0) \rangle \tag{1.62}$$

while for $i=1,\cdots,N$, one apply flattening boundary and then (1.47) on each $C_{R_i}^+$ to obtain

$$\int_{\Omega} f \phi_i \operatorname{div} g \, dx = -\int_{\Omega} \langle g, D(f \phi_i) \rangle + \int_{\partial \Omega} \varphi \phi_i \langle g, \nu \rangle \, dH_{n-1} \tag{1.63}$$

Hence summing up (1.62) and (1.63) gives (1.61).

Proposition 1.2.3 (Approximation in BV implies Approximation in Trace). $\Omega \subset \mathbb{R}^n$ open and bounded, $\partial \Omega$ Lipschitz. $f \in BV(\Omega)$. If $\{f_j\} \subset BV(\Omega)$ s.t. $f_j \to f$ in $L^1(\Omega)$ and

$$\lim_{j \to \infty} \int_{\Omega} |Df_j| = \int_{\Omega} |Df| \tag{1.64}$$

then, letting φ_j be trace for f_j and φ trace for f

$$\lim_{j \to \infty} \int_{\partial \Omega} |\varphi_j - \varphi| \, dH_{n-1} = 0 \tag{1.65}$$

Remark 1.2.1. Let $\Omega \subset \mathbb{R}^n$ open and bounded, $\partial \Omega$ Lipschitz. $f \in BV(\Omega)$.

- By smooth approximation Theorem 1.1.2, there exists $\{f_j\} \subset C^{\infty}(\Omega)$ s.t. $||f_j f||_{L^1(\Omega)} \to 0$ and $\lim_{j\to 0} \int_{\Omega} |Df_j| dx = \int_{\Omega} |Df|$. As in Proposition 1.2.1, or essentially (1.18), letting φ_j be trace for f_j and φ trace for f, one has $\varphi_j = \varphi$ for any j.
- Let $A \subset\subset \Omega$ open with ∂A Lipschitz. Then $f|_A \in BV(A)$ and $f|_{\Omega \setminus \overline{A}}$, hence denote f_A^- , $f_A^+ \in L^1(\partial A)$ as their trace respectively.
 - 1. One has immediately via differentiation (1.60) that for H_{n-1} -a.e. $x \in \partial A$

$$\lim_{\rho \to 0} \frac{1}{\rho^n} \int_{B_{\rho}(x) \cap A} |f(z) - f_A^-(x)| \, dz = 0 \qquad \lim_{\rho \to 0} \frac{1}{\rho^n} \int_{B_{\rho}(x) \cap (\Omega \setminus \overline{A})} |f(z) - f_A^+(x)| \, dz = 0 \qquad (1.66)$$

2. Via Extension property for BV Proposition 1.2.2, denoting ν as outer unit normal w.r.t. ∂A , one has important characterisation for the measures |Df| and Df on ∂A

$$\int_{\partial A} |Df| = \int_{\partial A} |f_A^+ - f_A^-| dH_{n-1}(y)$$
 (1.67)

$$\int_{\partial A} Df = \int_{\partial A} (f_A^+ - f_A^-) \nu \, dH_{n-1}(y) \tag{1.68}$$

In particular, let $\Omega = B_R$ and $A = B_\rho$ for $\rho < R$, and denote f_ρ^- , $f_\rho^+ \in L^1(\partial B_\rho)$ as trace for $f|_{B_\rho}$ and $f|_{B_R \setminus \overline{B}_\rho}$ respectively. One has, for some N_1 , $N_2 \subset \mathbb{R}$ set measure 0

$$\lim_{\substack{t \to \rho^{-} \\ t \notin N_{1}}} \int_{\partial B_{1}} |f(tx) - f_{\rho}^{-}(\rho x)| \, dH_{n-1}(x) = 0 \qquad \lim_{\substack{t \to \rho^{+} \\ t \notin N_{2}}} \int_{\partial B_{1}} |f(tx) - f_{\rho}^{+}(\rho x)| \, dH_{n-1}(x) = 0 \tag{1.69}$$

Proof. It suffices to prove for f_{ρ}^- . Notice, by a change of variables, for any $\frac{\rho}{2} < t < \rho$

$$\int_{\partial B_1} |f(tx) - f_{\rho}^{-}(\rho x)| dH_{n-1}(x) = \frac{1}{\rho^n} \int_{\partial B_{\rho}} |f(\frac{t}{\rho}x) - f_{\rho}^{-}(x)| dH_{n-1}(x)$$

$$\leq \frac{1}{\rho^n} \frac{1}{(\rho - t)^n} \int_{\partial B_{\rho}} \int_{B_{2(\rho - t)}(x) \cap B_{\rho}} |f(z) - f_{\rho}^{-}(x)| dz H_{n-1}(x)$$

where the last inequality holds for a.e. t. Denote the set that it fails by N_1 . Now since $f \in L^1(B_R)$, one may apply DCT and use the inner part of (1.66)

$$\limsup_{\substack{t \to \rho^{-} \\ t \notin N_{1}}} \int_{\partial B_{1}} |f(tx) - f_{\rho}^{-}(\rho x)| dH_{n-1}(x) \leq \limsup_{\substack{t \to \rho^{-} \\ t \notin N_{1}}} \frac{1}{\rho^{n}} \int_{\partial B_{\rho}} \frac{1}{(\rho - t)^{n}} \int_{B_{2(\rho - t)}(x) \cap B_{\rho}} |f(z) - f_{\rho}^{-}(x)| dz H_{n-1}(x)$$

$$\leq \frac{1}{\rho^{n}} \int_{\partial B_{\rho}} \left(\lim_{\substack{t \to \rho^{-} \\ t \notin N_{1}}} \frac{1}{(\rho - t)^{n}} \int_{B_{2(\rho - t)}(x) \cap B_{\rho}} |f(z) - f_{\rho}^{-}(x)| dz \right) H_{n-1}(x)$$

$$= 0$$

Also, since $f \in BV(\Omega)$, |Df| is of finite measure. Due to countable additivity of measure for |Df|, for a.e. ρ , one has $\int_{\partial B_{\rho}} |Df| = 0$, hence

$$f_{\rho}^{+}(x) = f(x) = f_{\rho}^{-}(x)$$
 for $H_{n-1} - a.e. \ x \in \partial B_{\rho}$ for $a.e. \ \rho$ (1.70)

- Let $A \subset \Omega$ open with ∂A Lipschitz, and $f \in BV(A)$. One may extend f to Ω by $F := \begin{cases} f & \text{in } A \\ 0 & \text{in } \Omega \setminus A \end{cases}$ hence denoting F_A^- , $F_A^+ \in L^1(\partial A)$ as trace for $F|_A$, $F|_{\Omega \setminus \overline{A}}$, one has $F_A^- = f_A^-$ as trace of f on ∂A , and $F_A^+ = 0$.
 - 1. from (1.67)

$$\int_{\Omega} |DF| - \int_{A} |Df| = \int_{\Omega \cap \partial A} |DF| = \int_{\Omega \cap \partial A} |f_A^-| dH_{n-1}$$

$$\tag{1.71}$$

2. from (1.68), denoting ν as inner unit normal w.r.t. ∂A

$$\int_{\Omega} DF - \int_{A} Df = \int_{\Omega \cap \partial A} DF = \int_{\Omega \cap \partial A} f_{A}^{-} \nu \, dH_{n-1} \tag{1.72}$$

In particular, one may further compute 3 perimeters for subsets of Caccioppoli set w.r.t. some ball. Let $\Omega = B_R$ and $A = B_\rho$ for $\rho < R$, and $f = \varphi_E$ for $E \subset \mathbb{R}^n$ Caccioppoli. Then $F = \varphi_{E \cap B_\rho}$. Due to (1.70), for a.e. ρ , $\varphi_E = \varphi_{E,\rho}^-$ for H_{n-1} -a.e. $x \in \partial B_\rho$. Note $\partial B_\rho \cap B_R = \partial B_\rho$, so

1. from (1.71)

$$P(E \cap B_{\rho}, B_{R}) = P(E, B_{\rho}) + H_{n-1}(E \cap \partial B_{\rho}) \qquad \text{for a.e. } \rho \text{ s.t. } (1.70) \text{ holds}$$
 (1.73)

2. similarly, from (1.72), denoting ν as inner unit normal w.r.t. ∂B_{ρ}

$$\int_{B_R} D\varphi_{E \cap B_\rho} = \int_{B_\rho} D\varphi_E + \int_{\partial B_\rho} \varphi_E \,\nu \,dH_{n-1} \qquad for \ a.e. \ \rho \ s.t. \ (1.70) \ holds \qquad (1.74)$$

Now let $A = B_R \setminus \overline{B}_{\rho}$, then $F = \varphi_{E \cap (B_R \setminus \overline{B}_{\rho})}$, so for a.e. ρ , $\varphi_E = \varphi_{E,\rho}^+$ for H_{n-1} -a.e. $x \in \partial B_{\rho}$

$$P(E \setminus \overline{B}_{\rho}, B_{R}) = P(E, B_{R} \setminus \overline{B}_{\rho}) + H_{n-1}(E \cap \partial B_{\rho}) \qquad \text{for a.e. } \rho \text{ s.t. (1.70) holds}$$
 (1.75)

Furthermore for A as above, $B_R \setminus (E \cap (B_R \setminus \overline{B}_{\rho})) = (B_R \setminus E) \cap (B_R \setminus \overline{B}_{\rho})$, then using that mutual disjoint sets share same perimeter

$$P((B_R \setminus E) \cap (B_R \setminus \overline{B}_{\varrho}), B_R) = P(E \cap (B_R \setminus \overline{B}_{\varrho}), B_R) = P(E \setminus \overline{B}_{\varrho}, B_R)$$

one has, again by mutual disjoint sets sharing same perimeter

$$P(E \cup \overline{B}_{\rho}, B_{R}) = P(B_{R} \setminus (E \cup \overline{B}_{\rho}), B_{R}) = P((B_{R} \setminus E) \cap (B_{R} \setminus \overline{B}_{\rho}), B_{R}) = P(E \setminus \overline{B}_{\rho}, B_{R})$$

$$= P(E, B_{R} \setminus \overline{B}_{\rho}) + H_{n-1}(E \cap \partial B_{\rho}) \quad \text{for a.e. } \rho \text{ s.t. } (1.70) \text{ holds}$$

$$(1.76)$$

Hence one may measure perimeter of subsets for E in big ball using perimeter of E in small balls and the boundary quantity $H_{n-1}(E \cap \partial B_{\rho})$ via (1.73), (1.75) and (1.76).

1.2.4 Converse to Trace Construction

Theorem 1.2.3 (Converse to Trace Construction). Let $\varphi \in L^1(\mathcal{B}_R)$ for R > 0 and compactly supported. For any $\varepsilon > 0$, there exists $f \in W^{1,1}(C_R^+)$ s.t. φ is trace of f and

$$\int_{C_R^+} |f| \, dx \le \varepsilon \int_{\mathscr{B}_R} |\varphi| \, dH_{n-1} \tag{1.77}$$

$$\int_{C_R^+} |Df| \, dx \le (1+\varepsilon) \int_{\mathscr{B}_R} |\varphi| \, dH_{n-1} \tag{1.78}$$

Proof. There exists $\{\varphi_j\} \subset C^{\infty}(\mathscr{B}_R)$ s.t. $\|\varphi_j - \varphi\|_{L^1(\mathscr{B}_R)} \to 0$ with $\varphi_0 = 0$, $\|\varphi_j\|_{L^1(\mathscr{B}_R)} \le 2 \|\varphi\|_{L^1(\mathscr{B}_R)}$ and

$$\int_{\mathscr{B}_R} \left| \varphi_j - \varphi_{j+1} \right| dH_{n-1} \leq 2^{-j-1} \left(1 + \frac{\varepsilon}{2} \right) \int_{\mathscr{B}_R} \left| \varphi \right| dH_{n-1} \implies \sum_{j=0}^{\infty} \left\| \varphi_j - \varphi \right\|_{L^1(\mathscr{B}_R)} \leq \left(1 + \frac{\varepsilon}{2} \right) \left\| \varphi \right\|_{L^1(\mathscr{B}_R)}$$

Now one may construct f with support on neighborhood of \mathscr{B}_R . Let $\{t_k\} \subset (0,R)$ be strictly decreasing sequence to 0. Define $f: C_R^+ \to \mathbb{R}$ s.t. for $x \in \mathscr{B}_R$, $t \in (0,R)$

$$f(x, t) := \begin{cases} 0 & \text{if } t > t_0 \\ \frac{t - t_{k+1}}{t_k - t_{k+1}} \varphi_k(x) + \frac{t_k - t}{t_k - t_{k+1}} \varphi_{k+1}(x) & \text{if } t_k \ge t > t_{k+1} \text{ for } k \ge 0 \end{cases}$$

Hence one may calculate for any $t_k \ge t > t_{k+1}$ for $k \ge 0$

$$|D_i f| \le |D_i \varphi_k(x)| + |D_i \varphi_{k+1}(x)| \quad 1 \le i \le n - 1$$
$$|D_n f| \le \frac{1}{t_k - t_{k+1}} |\varphi_k(x) - \varphi_{k+1}(x)|$$

Hence one calculate $\int_{C_R^+} |f| \, dx$ and $\int_{C_R^+} |Df| \, dx$ s.t.

$$\begin{split} \int_{C_R^+} |f| \, dx &= \int_0^R \int_{\mathscr{B}_R} |f| \, dH_{n-1}(x) \, dt = \sum_{k=0}^\infty \int_{t_{k+1}}^{t_k} \int_{\mathscr{B}_R} |f| \, dH_{n-1}(x) \, dt \\ &\leq \sum_{k=0}^\infty \int_{t_{k+1}}^{t_k} \left(\|\varphi_k\|_{L^1(\mathscr{B}_R)} + \|\varphi_{k+1}\|_{L^1(\mathscr{B}_R)} \right) \, dt = \sum_{k=0}^\infty \left(\|\varphi_k\|_{L^1(\mathscr{B}_R)} + \|\varphi_{k+1}\|_{L^1(\mathscr{B}_R)} \right) (t_k - t_{k+1}) \\ &\leq 4 \, \|\varphi\|_{L^1(\mathscr{B}_R)} \sum_{k=0}^\infty (t_k - t_{k+1}) = 4t_0 \, \|\varphi\|_{L^1(\mathscr{B}_R)} \\ \int_{C_R^+} |Df| \, dx &= \sum_{k=0}^\infty \int_{t_{k+1}}^{t_k} \int_{\mathscr{B}_R} |Df| \, dH_{n-1}(x) \, dt \leq \sum_{k=0}^\infty \int_{t_{k+1}}^{t_k} \sum_{i=1}^n \int_{\mathscr{B}_R} |D_i f| \, dH_{n-1}(x) \, dt \\ &\leq \sum_{k=0}^\infty \int_{t_{k+1}}^{t_k} \left(\sum_{i=1}^{n-1} \left(\|D_i \varphi_k\|_{L^1(\mathscr{B}_R)} + \|D_i \varphi_{k+1}\|_{L^1(\mathscr{B}_R)} \right) + \frac{1}{t_k - t_{k+1}} \, \|\varphi_k - \varphi_{k+1}\|_{L^1(\mathscr{B}_R)} \right) \, dt \\ &\leq \sum_{k=0}^\infty \left(\left(\|D\varphi_k\|_{L^1(\mathscr{B}_R)} + \|D\varphi_{k+1}\|_{L^1(\mathscr{B}_R)} \right) (t_k - t_{k+1}) + \|\varphi_k - \varphi_{k+1}\|_{L^1(\mathscr{B}_R)} \right) \\ &\leq \sum_{k=0}^\infty \left(\|D\varphi_k\|_{L^1(\mathscr{B}_R)} + \|D\varphi_{k+1}\|_{L^1(\mathscr{B}_R)} \right) (t_k - t_{k+1}) + \left(1 + \frac{\varepsilon}{2} \right) \|\varphi\|_{L^1(\mathscr{B}_R)} \end{split}$$

But one is left to choose t_k freely. Hence choose t_k s.t. $4t_0 < \varepsilon$ and for $k \ge 0$

$$(t_k - t_{k+1}) \le \frac{\varepsilon \|\varphi\|_{L^1(\mathscr{B}_R)}}{1 + \|D\varphi_k\|_{L^1(\mathscr{B}_R)} + \|D\varphi_{k+1}\|_{L^1(\mathscr{B}_R)}} 2^{-k-2}$$

Hence one obtain (1.77) and (1.78), whence $f \in W^{1,1}(C_R^+)$. To see φ really is trace for f, denote $f_t(x) := f(x,t)$ and compute for $f_t(x) := f(x,t)$ and compute for $f_t(x) := f(x,t)$

$$\int_{\mathscr{B}_R} \left| f_t(x) - \varphi(x) \right| dH_{n-1}(x) \leq \int_{\mathscr{B}_R} \left| \frac{t - t_{k+1}}{t_k - t_{k+1}} \varphi_k(x) - \varphi(x) \right| dH_{n-1}(x) + \int_{\mathscr{B}_R} \left| \frac{t_k - t}{t_k - t_{k+1}} \varphi_{k+1}(x) - \varphi(x) \right| dH_{n-1}(x) \overset{k \to \infty}{\to} 0$$

Hence by uniqueness of L^1 limits, φ is indeed trace for f.

Theorem 1.2.4 (Converse to Trace Construction). $\Omega \subset \mathbb{R}^n$ open bounded, $\partial \Omega$ Lipschitz. $\varphi \in L^1(\partial \Omega)$. Then for any $\varepsilon > 0$, there exists $f \in W^{1,1}(\Omega)$ s.t. φ is trace of f and

$$\int_{\Omega} |f| \, dx \le \varepsilon \int_{\partial \Omega} |\varphi| \, dH_{n-1} \tag{1.79}$$

$$\int_{\Omega} |Df| \, dx \le A \int_{\partial \Omega} |\varphi| \, dH_{n-1} \tag{1.80}$$

for $A = A(\partial\Omega)$ but independent of f, φ , ε . If moreover $\partial\Omega$ is C^1 , one may choose $A = (1 + \varepsilon)$. Also, f may be taken to be supported on arbitrary small neighborhood of $\partial\Omega$ by controlling t_0 via ε .

Chapter 2

Reduced Boundary

2.1 Construction and Properties

As a preliminary, one finds substitution for general Borel sets so that their measure theoretic boundary and topological boundary agree. We work with sets satisfying Lemma 2.1.1 from later on.

Lemma 2.1.1. Let $E \subset \mathbb{R}^n$ Borel. Then there exists \tilde{E} Borel s.t. $|\tilde{E}\Delta E| = 0$ differ by Lebesgue measure 0 and

$$0 < |\tilde{E} \cap B_{\rho}(x)| < \omega_n \rho^n \quad \text{for any } \rho > 0 \text{ and } x \in \partial \tilde{E}$$
 (2.1)

Proof. Define

$$E_0 := \{ x \in \mathbb{R}^n \mid \text{ there exists } \rho > 0 \text{ s.t. } |E \cap B_\rho(x)| = 0 \}$$

$$E_1 := \{ x \in \mathbb{R}^n \mid \text{ there exists } \rho > 0 \text{ s.t. } |E \cap B_\rho(x)| = |B_\rho(x)| = \omega_n \rho^n \}$$

One see both E_0 and E_1 are open. For $x \in E_0$, take $\rho > 0$ s.t. $|E \cap B_\rho(x)| = 0$. Then for any $y \in B_\rho(x)$, let $\rho_0 := \rho - |x - y|$, so $B_{\rho_0}(y) \subset B_\rho(x)$ hence $|E \cap B_{\rho_0}(y)| = 0$. Due to existence of ρ_0 , $y \in E_0$, i.e., the neighborhood $B_\rho(x) \subset E_0$. So E_0 open. For $x \in E_1$, there exists $\rho > 0$ s.t. $|E \cap B_\rho(x)| = |B_\rho(x)|$, i.e., $|B_\rho(x) \cap E^c| = 0$. Again, for any $y \in B_\rho(x)$, let $\rho_0 := \rho - |x - y|$, so $B_{\rho_0}(y) \subset B_\rho(x)$, thus $|B_{\rho_0}(y) \cap E^c| = 0$. Hence $y \in E_1$, we have $B_\rho(x) \subset E_1$, so E_1 is open. One may further show that $|E_0 \cap E| = 0$. Since for any $x \in E_0$, one may choose ρ_x s.t. $|E \cap B_{\rho_x}(x)| = 0$, and it indeed covers $E_0 \subset \bigcup_{x \in E_0} B_{\rho_x}(x)$, we may choose sequence $\{x_j\} \subset E_0$ as index for covering. One compute, due to $|B_{\rho_{x_j}}(x_j) \cap E| = 0$ for any j

$$|E_0 \cap E| \le |\bigcup_{j=1}^{\infty} B_{\rho_{x_j}}(x_j) \cap E| \le \sum_{j=1}^{\infty} |B_{\rho_{x_j}}(x_j) \cap E| = 0$$

Similarly, $|E_1 \setminus E| = 0$ by replacing E in above computation with E^c . Since E_0 , E_1 open, $\tilde{E} := (E \cup E_1) \setminus E_0$ is Borel. And indeed one has $|\tilde{E}\Delta E| = 0$ via the following

$$|E \setminus \tilde{E}| = |E \cap ((E \cup E_1) \setminus E_0)^c| = |E \cap ((E \cup E_1)^c \cup E_0)| = |(E \cap E^c \cap E_1^c) \cup (E \cap E_0)| = |E_0 \cap E| = 0$$

$$|\tilde{E} \setminus E| = |(E \cup E_1) \cap E_0^c \cap E^c| = |(E \cap E_0^c \cap E^c) \cup (E_1 \cap E_0^c \cap E^c)| \le |E_1 \setminus E| = 0$$

Now for any $x \in \partial \tilde{E}$, since E_0 , E_1 open, $x \notin E_0 \cup E_1$. Hence for any $\rho > 0$, (2.1) holds.

2.1.1 Reduced Boundary and Uniform Density Estimate

Definition 2.1.1 (Reduced Boundary). Given $E \subset \mathbb{R}^n$ Caccioppoli. $x \in \partial^* E$ reduced boundary if

$$\int_{B_{\rho}(x)} |D\varphi_E| > 0 \quad \text{for any } \rho > 0 \tag{2.2}$$

and hence, defining

$$\nu_{\rho}(x) := \frac{\int_{B_{\rho}(x)} D\varphi_E}{\int_{B_{\rho}(x)} |D\varphi_E|} \quad \text{for any } \rho > 0$$
 (2.3)

One require the limits $\lim_{\rho \to 0} \nu(x)$ exists and has length 1

$$\nu(x) := \lim_{\rho \to 0} \nu(x) = \lim_{\rho \to 0} \frac{\int_{B_{\rho}(x)} D\varphi_E}{\int_{B_{\rho}(x)} |D\varphi_E|}$$

$$(2.4)$$

$$|\nu(x)| = 1\tag{2.5}$$

i.e., $\partial^* E := \{x \in \partial E \mid (2.2) \text{ holds for any } \rho > 0, \text{ and the limiting object } (2.3) \text{ satisfies } (2.4) \text{ and } (2.5)\}$

Recall the Lebesgue-Besicovitch differentiation.

Lemma 2.1.2 (Lebesgue-Besicovitch differentiation). μ_1 , μ_2 Borel measures on \mathbb{R}^n , then

$$D_{\mu_2}\mu_1 := \lim_{\rho \to 0} \frac{\mu_1(B_{\rho}(x))}{\mu_2(B_{\rho}(x))}$$

is defined μ_2 -a.e. on \mathbb{R}^n , and $D_{\mu_2}\mu_1 \in L^1_{loc}(\mathbb{R}^n, \mu_2)$. If furthermore, $\mu_1 \ll \mu_2$, i.e., μ_1 is absolutely continuous w.r.t. μ_2 in the sense that $\mu_2(E) = 0$ implies $\mu_1(E)$ for any $E \subset \mathbb{R}^n$ Borel, then we write

$$\mu_1 = D_{\mu_2}\mu_1 \cdot \mu_2$$
 on all Borel sets

Remark 2.1.1. Note $D\varphi_E$ is indeed absolutely continuous w.r.t. $|D\varphi_E|$. Hence apply Lemma 2.1.2, one has

$$\nu(x) := \lim_{\rho \to 0} \frac{\int_{B_{\rho}(x)} D\varphi_E}{\int_{B_{\rho}(x)} |D\varphi_E|} \text{ exists and } |\nu(x)| = 1 \qquad |D\varphi_E| - a.e. \ x \in \mathbb{R}^n$$
 (2.6)

and the following measures agree

$$D\varphi_E = \nu |D\varphi_E|$$
 on all Borel sets (2.7)

Example 2.1.1. One has 2 examples. One for smooth boundary and one for Lipschitz.

• Let $E \subset \mathbb{R}^n$ be bounded, Caccioppoli with C^2 boundary ∂E . Then $\partial^* E = \partial E$.

Proof. Let A = E and $f = \varphi_E$ in (1.68), one has via Extension property for $\varphi_E \in BV(\mathbb{R}^n)$ that

$$D\varphi_E = \nu dH_{n-1}$$
 on ∂E

where ν denote inner unit normal w.r.t. ∂E . And because $\operatorname{supp} D\varphi_E \subset \partial E$, one writes for any $\rho > 0$

$$\int_{B_{\rho}(x)} D\varphi_E = \int_{B_{\rho}(x) \cap \partial E} \nu \, dH_{n-1}$$

while C^2 boundary ensure via (1.4) that

$$\int_{B_{\rho}(x)} |D\varphi_{E}| = H_{n-1}(B_{\rho}(x) \cap \partial E)$$

hence one has explicit formula for ν_{ρ}

$$\nu_{\rho}(x) = \frac{\int_{B_{\rho}(x) \cap \partial E} \nu \, dH_{n-1}}{H_{n-1}(B_{\rho}(x) \cap \partial E)} \qquad \text{for any } x \in \partial E$$

Since $\nu \in C^1(\partial E; \mathbb{R}^n)$, differentiation gives $\lim_{\rho \to 0} \nu_{\rho}(x) = \nu(x)$ for any $x \in \partial E$. Hence $|\nu| = 1$ as inherited.

• Let $E = (0,1) \times (0,1) \subset \mathbb{R}^2$. Notice except for the four corners, the boundaries are piecewise C^{∞} , hence these parts belong to $\partial^* E$. Now for any corner x, one may compute

$$|\nu(x)| = \lim_{\rho \to 0} \frac{|\int_{B_{\rho}(x)} D\varphi_E|}{\int_{B_{\rho}(x)} |D\varphi_E|} = \frac{1}{\sqrt{2}}$$

Hence the four corners do not belong to $\partial^* E$.

One has Uniform Density estimates, which says bounded oscillation in normal directions at a given boundary point $x \in \partial E$ prevents densities of E and E^c from disappearing under blow-up limit. In particular, if $x \in \partial^* E$, it indeed satisfies our assumption, so uniform density estimate holds. For simplicity, let $0 \in \partial E$ via translation.

Theorem 2.1.1 (Uniform Density Estimates). $E \subset \mathbb{R}^n$ be Caccioppoli and $0 \in \partial E$. If there exists $\rho_0 > 0$ and q > 0 constants s.t. for any $\rho < \rho_0$

$$\int_{B_{\rho}} |D\varphi_{E}| > 0$$

$$|\nu_{\rho}(0)| = \left| \frac{\int_{B_{\rho}} D\varphi_{E}}{\int_{B_{\rho}} |D\varphi_{E}|} \right| \ge q > 0$$
(2.8)

Then for any $\rho < \rho_0$, one has uniform estimates on the density

$$\frac{|E \cap B_{\rho}|}{\rho^n} \ge C_1(n, q) > 0 \tag{2.9}$$

$$\frac{|E^c \cap B_\rho|}{\rho^n} \ge C_2(n, q) > 0 \tag{2.10}$$

$$0 < C_3(n, q) \le \frac{\int_{B_\rho} |D\varphi_E|}{\rho^{n-1}} \le C_4(n, q) < \infty$$
 (2.11)

for constants C_1 , C_2 , C_3 , C_4 only relevant to n, q.

Proof. Since E Caccioppoli, $\varphi_E \in BV(B_{\rho_0})$. Denoting ν as inner unit normal w.r.t. ∂B_{ρ} one has via (1.74)

$$\int D\varphi_{E\cap B_\rho} = \int_{B_\rho} D\varphi_E + \int_{\partial B_\rho} \varphi_E \, \nu \, dH_{n-1} \qquad for \ a.e. \ \rho < \rho_0$$

evaluate the vector-valued measure on some constant unit vector $e \in \mathbb{S}^{n-1}$ gives, for ρ s.t. (1.74) holds

$$0 = -\int \operatorname{div}(e) \, \varphi_{E \cap B_{\rho}} = \int \langle e, \, D\varphi_{E \cap B_{\rho}} \rangle = \int_{B_{\rho}} \langle e, \, D\varphi_{E} \rangle + \int_{\partial B_{\rho}} \varphi_{E} \, \nu \cdot edH_{n-1}$$

Hence for any $e \in \mathbb{S}^{n-1}$

$$\left| \int_{B_{\rho}} \langle e, \, D\varphi_E \rangle \right| = \left| \int_{\partial B_{\rho}} \varphi_E \, \nu \cdot e dH_{n-1} \right| \le \int_{\partial B_{\rho}} \varphi_E \, dH_{n-1} = H_{n-1}(E \cap \partial B_{\rho}) \le C\rho^{n-1}$$

taking supremum on LHS and using Riesz Representation yields

$$\left| \int_{B_{\rho}} D\varphi_E \right| \le H_{n-1}(E \cap \partial B_{\rho}) \tag{2.12}$$

Using (2.12) and (2.8) further gives

$$\left| \int_{B_{\rho}} |D\varphi_{E}| \le \frac{1}{q} \left| \int_{B_{\rho}} D\varphi_{E} \right| \le C_{4} \rho^{n-1} \quad for \ a.e. \ \rho < \rho_{0} \ s.t. \ (1.74) \ holds$$

Now using continuity from above of the measure $|D\varphi_E|$, we conclude the second part to (2.11) for all $\rho < \rho_0$. Now, using (1.73) and similar reasons as above, one has

$$P(E \cap B_{\rho}) = P(E, B_{\rho}) + H_{n-1}(E \cap \partial B_{\rho}) \quad \text{for a.e. } \rho < \rho_{0}$$

$$= \int_{B_{\rho}} |D\varphi_{E}| + \int_{\partial B_{\rho}} \varphi_{E} dH_{n-1} \le \left(\frac{1}{q} + 1\right) \int_{\partial B_{\rho}} \varphi_{E} dH_{n-1}$$

Since $E \cap B_{\rho}$ is bounded Caccioppoli, via isoperimetric inequality (1.40) and noting $P(E \cap B_{\rho}) = \int |D\varphi_{E \cap B_{\rho}}|$

$$|E \cap B_{\rho}|^{\frac{n-1}{n}} \le \left(\frac{1}{q} + 1\right) C(n) \int_{\partial B_{\rho}} \varphi_E \, dH_{n-1} \tag{2.13}$$

for some C(n) from (1.40). Notice by coarea formula, denoting $g(\rho) = |E \cap B_{\rho}|$

$$g(R) = |E \cap B_R| = \int_{B_R} \varphi_E \, dx = \int_0^R \int_{\partial B_\rho} \varphi_E \, dH_{n-1} \, d\rho \implies g'(\rho) = \int_{\partial B_\rho} \varphi_E \, dH_{n-1}$$

Hence (2.13) writes

$$g(\rho)^{\frac{n-1}{n}} \le \left(\frac{1}{q} + 1\right) C(n)g'(\rho) \implies \rho \le \left(\frac{1}{q} + 1\right) C(n) n g(\rho)^{\frac{1}{n}} \implies \left(\frac{1}{C(n) n \left(\frac{1}{q} + 1\right)}\right)^n \le \frac{|E \cap B_\rho|}{\rho^n}$$

denoting $C_1 := \left(\frac{1}{C(n)n\left(\frac{1}{q}+1\right)}\right)^n$ and using continuity from below of the measure $|E \cap B_{\rho}|$ in ρ , one conclude (2.9) for every $\rho < \rho_0$. Note for E^c , $D\varphi_{E^c} = -D\varphi_E$ due to for any $g \in C_0^1(\mathbb{R}^n; \mathbb{R}^n)$

$$\int \langle g, D\varphi_{E^c} \rangle = -\int \varphi_{E^c} \operatorname{div}(g) \, dx = -\int (1 - \varphi_E) \operatorname{div}(g) \, dx = \int \varphi_E \operatorname{div}(g) \, dx = -\int \langle g, D\varphi_E \rangle$$

whence $|D\varphi_E| = |D\varphi_{E^c}|$ and the above same argument runs with $C_2 = C_1$, resulting in (2.10). To see first part to (2.11), notice from (2.9) and (2.10), one has

$$C_1 \rho^n \le \min\{|E \cap B_{\rho}|, |E^c \cap B_{\rho}|\} \implies C_1^{\frac{n-1}{n}} \rho^{n-1} \le \min\{|E \cap B_{\rho}|, |E^c \cap B_{\rho}|\}^{\frac{n-1}{n}}$$

Hence applying Poincaré inequality (1.41) one has, for some $\tilde{C}(n) > 0$

$$C_1^{\frac{n-1}{n}}\rho^{n-1} \leq \tilde{C}(n) \int_{B_{\rho}} |D\varphi_E| \implies 0 < \frac{C_1^{\frac{n-1}{n}}}{\tilde{C}(n)} \leq \frac{1}{\rho^{n-1}} \int_{B_{\rho}} |D\varphi_E|$$

define $C_3 := \frac{C_1^{\frac{n-1}{n}}}{\tilde{C}(n)}$ yields the first part of (2.11).

2.1.2 Blow-up Limit

One define the tangent plane and half spaces for given $z \in \partial^* E$ (hence $\nu(z)$ is well-defined and $|\nu(z)| = 1$)

- Tanget Hyperplane to $\partial^* E$ at z is $T(z) := \{x \in \mathbb{R}^n \mid \langle \nu(z), x z \rangle = 0\}$
- Half spaces to $\partial^* E$ at z on the same and opposite side with $\nu(z)$ are respectively

$$T^{+}(z) := \{ x \in \mathbb{R}^{n} \mid \langle \nu(z), x - z \rangle > 0 \}$$

$$T^{-}(z) := \{ x \in \mathbb{R}^{n} \mid \langle \nu(z), x - z \rangle < 0 \}$$

One may now show that the blowup limit of a point in reduced boundary actually converges to the half space on the same side as the outer normal. For simplicity, via translation and rotation, one assume $0 \in \partial^* E$, and the outer normal $\nu(0)$ is parallel to the x_1 -axis that points towards $-\infty$. One wish to obtain the limit $T^+(0)$.

Theorem 2.1.2 (Blow-up Limit of Reduced Boundary). $E \subset \mathbb{R}^n$ Caccioppoli. $0 \in \partial^* E$ with $\nu(0) = (-1, 0, \dots, 0)$. For any t > 0, define the set for blowup

$$E_t := \{ x \in \mathbb{R}^n \mid t \, x \in E \} \tag{2.14}$$

Then there exists a subsequence $t_j \to 0^+$ s.t. $E_j := E_{t_j} \to T^+ := T^+(0)$ in $L^1_{loc}(\mathbb{R}^n)$ sense. Moreover, for every open set $A \subset \mathbb{R}^n$ s.t. $H_{n-1}(\partial A \cap T(0)) = 0$

$$\lim_{t_j \to 0} \int_{A} |D\varphi_{E_j}| = \int_{A} |D\varphi_{T^+}| = H_{n-1}(T(0) \cap A)$$
(2.15)

Proof. One wish to extract a convergent subsequence using compactness argument. First note in our setting, the targeting limit is $T^+ = \{x \in \mathbb{R}^n \mid x_1 < 0\}$. Fix $\rho > 0$. Now by change of variables, for any $g \in C_0^1(B_\rho; \mathbb{R}^n)$, write $\tilde{g}(x) := g(x/t)$

$$\int_{B_{\rho}} \langle g, D\varphi_{E_{t}} \rangle = -\int_{B_{\rho}} \operatorname{div}(g(x)) \varphi_{E_{t}}(x) dx = -\int_{B_{\rho}} \operatorname{div}(\tilde{g}(tx)) \varphi_{E}(tx) dx
= -\int_{B_{\rho}} t \operatorname{div}(\tilde{g})(tx) \varphi_{E}(tx) dx = -\frac{1}{t^{n-1}} \int_{B_{t\rho}} \operatorname{div}(\tilde{g})(y) \varphi_{E}(y) dy
= \frac{1}{t^{n-1}} \int_{B_{t\rho}} \langle \tilde{g}, D\varphi_{E} \rangle \implies \int_{B_{\rho}} D\varphi_{E_{t}} = \frac{1}{t^{n-1}} \int_{B_{t\rho}} D\varphi_{E}$$
(2.16)

And by considering total variation, one has

$$\int_{B_{\rho}} |D\varphi_{E_t}| = \frac{1}{t^{n-1}} \int_{B_{t\rho}} |D\varphi_E| \tag{2.17}$$

With tools (2.16) and (2.17), one proceeds in two directions. First, making use of $0 \in \partial^* E$, in particular (2.4)

$$\lim_{t \to 0} \frac{1}{\int_{B_{\rho}} |D\varphi_{E_{t}}|} \begin{pmatrix} \int_{B_{\rho}} D_{1}\varphi_{E_{t}} \\ \int_{B_{\rho}} D_{2}\varphi_{E_{t}} \\ \vdots \\ \int_{B_{\rho}} D_{n}\varphi_{E_{t}} \end{pmatrix} = \lim_{t \to 0} \frac{\int_{B_{\rho}} D\varphi_{E_{t}}}{\int_{B_{\rho}} |D\varphi_{E_{t}}|} = \lim_{t \to 0} \frac{\int_{B_{t\rho}} D\varphi_{E}}{\int_{B_{t\rho}} |D\varphi_{E}|} = \nu(0) = \begin{pmatrix} -1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$
(2.18)

Second, one make an immediate observation that for each $\rho > 0$, $\{\varphi_{E_t}\}_t \subset BV(B_\rho)$ because E is Caccioppoli, and for each t, $B_{t\rho}$ is bounded, hence $\varphi_E \in BV(B_{t\rho})$ and RHS of (2.17) is bounded. Again, since $0 \in \partial^* E$, one has uniform density estimate. Applying second part of (2.11), together with (2.17) yields

$$\limsup_{t \to 0} \int_{B_{\rho}} |D\varphi_{E_t}| = \limsup_{t \to 0} \frac{1}{t^{n-1}} \int_{B_{t\rho}} |D\varphi_E| \le C < \infty \tag{2.19}$$

Hence the sequence of functions $\{\varphi_{E_t}\}$ is uniformly bounded in $BV(B_\rho)$ norm for each $\rho>0$. Thus by compactness theorem 1.1.4, there exists a subsequence $\{\varphi_{E_j}\}$ where $E_j:=E_{t_j}$ s.t. $\varphi_{E_j}\to f$ in $L^1_{loc}(\mathbb{R}^n)$ (by unique limit on each ball B_ρ) and that $f\in BV(\mathbb{R}^n)$. Since f is L^1 limit of characteristic functions, $f=\varphi_C$ for some Borel set $C\subset\mathbb{R}^n$. Since $\varphi_C\in BV(\mathbb{R}^n)$, indeed C is Caccioppoli. Moreover, by De La Vallée Poussin Theorem, for a.e. ρ s.t. $\int_{\partial B_\rho}|D\varphi_C|=0$, one has approximation in vector-valued radon measure

$$\lim_{t_j \to 0} \int_{B_\rho} D\varphi_{E_j} = \int_{B_\rho} D\varphi_C \tag{2.20}$$

hence combining with (2.18) gives, for the x_1 direction

$$\lim_{t_j \to 0} \int_{B_{\rho}} |D\varphi_{E_j}| = -\lim_{t_j \to 0} \int_{B_{\rho}} D_1 \varphi_{E_j} = -\int_{B_{\rho}} D_1 \varphi_C$$

Now since $\varphi_{E_j} \to \varphi_C$ in $L^1_{loc}(\mathbb{R}^n)$, by semicontinuity 1.1.1

$$\int_{B_{\rho}} |D\varphi_C| \le \lim_{t_j \to 0} \int_{B_{\rho}} |D\varphi_{E_j}| = -\int_{B_{\rho}} D_1 \varphi_C \tag{2.21}$$

but since any other $\int_{B_{\rho}} D_i \varphi_C = 0$ for $i \geq 2$ as in (2.18), the equality in (2.21) holds. Now by Lebesgue-Besicovitch Differentiation 2.1.2

$$\begin{split} D_1\varphi_C &= \left(\lim_{t\to 0} \frac{\int_{B_\rho} D_1\varphi_C}{\int_{B_\rho} |D\varphi_C|}\right) |D\varphi_C| = -|D\varphi_C| \qquad on \ all \ Borel \ sets \\ D\varphi_C &= \left(\lim_{t\to 0} \frac{\int_{B_\rho} D\varphi_C}{\int_{B_\rho} |D\varphi_C|}\right) |D\varphi_C| = \begin{pmatrix} -1\\0\\\vdots\\0 \end{pmatrix} |D\varphi_C| \qquad on \ all \ Borel \ sets \end{split}$$

Hence $D_i \varphi_C = 0$ as Borel measure for $i \geq 2$. Therefore φ_C depends only on x_1 and $D_1 \varphi_C < 0$ implies φ_C is non-increasing in x_1 . Thus $C = \{x \in \mathbb{R}^n \mid x_1 < \lambda\}$ a.e. for some $\lambda \in \mathbb{R}$. One wish to determine λ . Suppose $\lambda < 0$, then we may construct ball $B_{|\lambda|}$ around 0 that does not intersect C, so using $\varphi_{E_j} \to \varphi_C$ in $L^1_{loc}(\mathbb{R}^n)$

$$0 = |C \cap B_{|\lambda|}| = \int_{B_{|\lambda|}} \varphi_C(x) \, dx = \lim_{t_j \to 0} \int_{B_{|\lambda|}} \varphi_{E_j}(x) \, dx$$

$$= \lim_{t_j \to 0} \frac{1}{t_j^n} \int_{B_{|\lambda|}} \varphi_E(t_j x) \, d(t_j x) = \lim_{t_j \to 0} \frac{1}{t_j^n} \int_{B_{|\lambda|}t_j} \varphi_E(y) \, dy$$

$$= \lim_{t_j \to 0} \frac{|E \cap B_{|\lambda|t_j}|}{t_j^n} \ge C_1 > 0$$

for some C_1 from (2.9), contradicting our assumption. If $\lambda > 0$, use

$$0 = |C^{c} \cap B_{|\lambda|}| = \int_{B_{|\lambda|}} \varphi_{C^{c}}(x) dx = \lim_{t_{j} \to 0} \int_{B_{|\lambda|}} \varphi_{E_{j}^{c}}(x) dx$$
$$= \lim_{t_{j} \to 0} \frac{1}{t_{j}^{n}} \int_{B_{|\lambda|t_{j}}} \varphi_{E^{c}}(y) dy = \lim_{t_{j} \to 0} \frac{|E^{c} \cap B_{|\lambda|t_{j}}|}{t_{j}^{n}} \ge C_{2} > 0$$

for some C_2 from (2.10). Hence $\lambda=0$, and so $C=T^+=\{x\in\mathbb{R}^n\mid x_1<0\}$ a.e. It remains to show for any open set $A\subset\mathbb{R}^n$ s.t. $H_{n-1}(\partial A\cap T(0))=0$, (2.15) holds. First note that, since T^+ has smooth boundary, one use remark 1.1.1 so that $|D\varphi_{T^+}|=H_{n-1}\sqcup\partial T^+=H_{n-1}\sqcup T(0)$ as Borel measures. So if $H_{n-1}(\partial A\cap T(0))=0$ for some A open, in fact $\int_{\partial A}|D\varphi_{T^+}|=0$. But this is condition for (1.8) where the equality in semicontinuity holds in subdomains. Hence apply (1.8), one directly arrives at (2.15).

Corollary 2.1.1 (Density Estimates on single side of Tangent Plane to Reduced Boundary). Let $E \subset \mathbb{R}^n$ Caccioppoli, and $0 \in \partial^* E$ with $\nu(0) = (-1, 0, \dots, 0)$. Then the volumne density on single side vanishes

$$\lim_{\rho \to 0} \frac{1}{\rho^n} |E \cap B_\rho \cap T^-| = 0 \tag{2.22}$$

$$\lim_{\rho \to 0} \frac{1}{\rho^n} |(B_\rho \setminus E) \cap T^+| = 0 \tag{2.23}$$

and for any ρ , $\varepsilon > 0$, denoting

$$S_{\rho,\,\varepsilon} := B_{\rho} \cap \{x \in \mathbb{R}^n \mid |\langle \nu(0), \, x \rangle| < \varepsilon \rho\} = B_{\rho} \cap \{x \in \mathbb{R}^n \mid |x_1| < \varepsilon \rho\}$$

the perimeter density takes up constant portion for any $\varepsilon > 0$

$$\lim_{\rho \to 0} \frac{1}{\rho^{n-1}} \int_{S_{\rho,\varepsilon}} |D\varphi_E| = \omega_{n-1} \tag{2.24}$$

where ω_{n-1} is volumne of n-1-dim unit ball.

Proof. Under definition (2.14), $T_{\rho}^{+}=T^{+}$ and $T_{\rho}^{-}=T^{-}$ for any $\rho>0$. By change of variables as in (2.16)

$$\begin{split} \frac{1}{\rho^n} |E \cap B_\rho \cap T^-| &= \frac{1}{\rho^n} \int_{B_\rho} \varphi_E(x) \varphi_{T^-}(x) \, dx = \int_{B_1} \varphi_E(\rho y) \, \varphi_{T^-}(\rho y) \, dy \\ &= \int_{B_1} \varphi_{E_\rho}(y) \, \varphi_{T^-_\rho}(y) \, dy = |E_\rho \cap B_1 \cap T^-| \\ \frac{1}{\rho^n} |(B_\rho \setminus E) \cap T^+| &= \frac{1}{\rho^n} \int_{B_\rho} \varphi_{E^c}(x) \, \varphi_{T^+}(x) \, dx = \int_{B_1} \varphi_{E^c}(\rho y) \, \varphi_{T^+}(\rho y) \, dy \\ &= \int_{B_1} \varphi_{E^c_\rho}(y) \, \varphi_{T^+_\rho}(y) \, dy = |(B_1 \setminus E_\rho) \cap T^+| \end{split}$$

But from Theorem 2.1.2, $E_{\rho} \to T^+$ in $L^1_{loc}(\mathbb{R}^n)$ up to a subsequence, hence

$$\lim_{\rho \to 0} \frac{1}{\rho^n} |E \cap B_\rho \cap T^-| = \lim_{\rho \to 0} |E_\rho \cap B_1 \cap T^-| = |T^+ \cap B_1 \cap T^-| = 0$$

$$\lim_{\rho \to 0} \frac{1}{\rho^n} |(B_\rho \setminus E) \cap T^+| = \lim_{\rho \to 0} |(B_1 \setminus E_\rho) \cap T^+| = |(B_1 \setminus T^+) \cap T^+| = 0$$

so (2.22) and (2.23) hold. Moreover, by the exact same procedure with $S_{\rho,\varepsilon}$ in place of B_{ρ} and $S_{1,\varepsilon}$ in place of B_1 as in (2.16), one has

$$\frac{1}{\rho^{n-1}} \int_{S_{\rho,\,\varepsilon}} |D\varphi_E| = \int_{S_{1,\,\varepsilon}} |D\varphi_{E_{\rho}}|$$

and since $S_{1,\varepsilon}$ is open set with $H_{n-1}(\partial S_{1,\varepsilon} \cap T) = 0$, apply (2.15) to conclude (2.24)

$$\lim_{\rho \to 0} \frac{1}{\rho^{n-1}} \int_{S_{0,\varepsilon}} |D\varphi_{E}| = \lim_{\rho \to 0} \int_{S_{1,\varepsilon}} |D\varphi_{E_{\rho}}| = H_{n-1}(T \cap S_{1,\varepsilon}) = \omega_{n-1}$$

2.2 Regularity of Reduced Boundary

The purpose of this section is to argue that for $E \subset \mathbb{R}^n$ Caccioppoli

- $\partial^* E$ is countable union of C^1 hypersurfaces up to set of $|D\varphi_E|$ -measure zero.
- $\partial^* E$ is dense in ∂E .
- $\int_{\Omega} |D\varphi_E| = H_{n-1}(\partial^* E \cap \Omega)$ so $|D\varphi_E| = H_{n-1} \sqcup \partial^* E$ as Radon measures.

One shall first recall the precise definition for Hausdorff measure.

Definition 2.2.1. Let $A \subset \mathbb{R}^n$, $0 \le k < \infty$ and $0 < \delta \le \infty$. We define the k-dim Hausdorff outer measure at step δ

$$H_k^{\delta}(A) := \frac{\omega_k}{2^k} \inf \left\{ \sum_{j=1}^{\infty} \operatorname{diam}(S_j)^k \mid A \subset \bigcup_{j=1}^{\infty} S_j, \operatorname{diam}(S_j) < \delta \,\,\forall j \right\}$$
 (2.25)

and consequently define

$$H_k(A) := \lim_{\delta \to 0} H_k^{\delta}(A) = \sup_{0 \le \delta \le \infty} H_k^{\delta}(A)$$

as k-dim Hausdorff measure. Here $\omega_k := \Gamma(\frac{1}{2})^k/\Gamma(\frac{k}{2}+1)$ for $k \geq 0$ is measure of unit ball in \mathbb{R}^k .

Lemma 2.2.1 (Ratio Estimate). $E \subset \mathbb{R}^n$ Caccioppoli. $B \subset \partial^* E$. Then

$$H_{n-1}(B) \le 2 \cdot 3^{n-1} \int_{B} |D\varphi_{E}|$$
 (2.26)

Proof. Since $|D\varphi_E|$ is Radon measure on \mathbb{R}^n , it can be approximated from the outside by open sets. Given B, for any $\eta > 0$, there exists $B \subset A$ open s.t.

$$\int_{A} |D\varphi_{E}| \le \int_{B} |D\varphi_{E}| + \eta \tag{2.27}$$

Moreover, for any $\varepsilon > 0$, apply (2.24) to arbitrary $x \in B$, there exists $0 < \rho(x) < \varepsilon$ s.t.

$$B_{\rho(x)}(x) \subset A$$
 and $\int_{B_{\rho(x)}(x)} |D\varphi_E| \ge \frac{1}{2}\rho(x)^{n-1}\omega_{n-1}$ (2.28)

One think about covering B using balls $\{B_{\rho(x)}(x)\}$ via lemma 1.2.3. So there exists $\{x_i\} \subset B$ s.t.

$$B \subset \bigcup_{i=1}^{\infty} B_{3\rho(x_i)}(x_i)$$
 and $B_{\rho(x_i)}(x_i) \cap B_{\rho(x_j)}(x_j) = \emptyset$ for $i \neq j$

and (2.28) holds for each x_i . Hence one may bound, using $B_{\rho(x_i)}(x_i) \subset A$ and disjoint, and then (2.27)

$$\sum_{i=1}^{\infty} (3\rho(x_i))^{n-1} \le \sum_{i=1}^{\infty} 3^{n-1} \frac{2}{\omega^{n-1}} \int_{B_{\rho(x_i)}(x_i)} |D\varphi_E| \le \frac{2 \cdot 3^{n-1}}{\omega^{n-1}} \int_A |D\varphi_E|$$

$$\le \frac{2 \cdot 3^{n-1}}{\omega^{n-1}} \left(\int_B |D\varphi_E| + \eta \right)$$

Hence recalling (2.25), since $B \subset \bigcup_{i=1}^{\infty} B_{3\rho(x_i)}(x_i)$ with $\rho(x_i) < \varepsilon$ universal bound in i

$$H_{n-1}(B) \le \lim_{\varepsilon \to 0} \frac{\omega_{n-1}}{2^{n-1}} \inf \left\{ \sum_{i=1}^{\infty} (2 \cdot 3\rho(x_i))^{n-1} \mid \rho(x_i) < \varepsilon \right\} \le 2 \cdot 3^{n-1} \left(\int_B |D\varphi_E| + \eta \right)$$

take $\eta \to 0$ to conclude (2.26).