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Solutions to Evans SDE

Mark Ma

August 2023

Let u = u(z,t) be a smooth solution of the backwards diffusion equation

1
U + Slea = 0

Let W(-) be one-dimensional Brownian motion. Show that for each time ¢ > 0, E(u(W (t),t)) = u(0,0).
Answer: Note by It6 formula, we have du(X, t) = udt+u,dX +2u,,dXdX, where in our case, X = W (t),
so dX = 1dW. Since Brownin Motion has quadratic variation, i.e., dWdW = dt, our formula reduces to
du(W,t) = (us + $uys)dt + u,dW. Notice u satisfies backwards diffusion equation, so du(W,t) = u,dW.
We integrate on both sides from 0 to ¢ to obtain u(W,t) —u(0,0) = f(f uydW. Since u(X,t) is smooth over
t, in particular, for any fixed time ¢, u € £2(0,t). Then we have E(fg u,dW) = 0 by theorem from 4.2.3.
Applying expectation on both sides gives E(u(W (t),t)) = u(0,0).

Calculate E(B?(t)) for the Brownian Bridge B(-), and show in particular that E(B?(t)) — 0 as t — 17.

Answer: Recall example 4 from 5.1.2. the solution to the Brownian Bridge Initial Value problem

dB=—Zdt+dW (0<t<1)
B(0)=0

has the form
1

— S

B(t):(l—t)/otl AW (0<t<1)

We calculate
. t
EB* = (1-1)? E(fo ﬁd” )2 =(1- t)QE(fo ﬁds)

The second equality holds for It6 Isometry from 4.2.3. Then we apply a change of variable n = 1 — s to

i_) =(1-1)? <11_tl> =1—-t—(1-1)?

Let X solve the Langevin Equation, and Xo ~ N (0, ‘;—2) Show that E(X (s)X (¢)) = g—;e_b‘t_s‘.
Answer: Recall example 5 from 5.1.2. the solution to the Langevin Equation Initial Value problem

obtain

1 1

%dn =(1-1)? (

2 _ 12
EB? = (1 t)/ ;

1—t 1

Thus as t — 17, E(B%(t)) — 0.

dX = —bXdt + odW
X(0) = X,

for b > 0 friction coefficient and o € R diffusion coefficient has the form

t
X(t) = e M Xo + 0 / =D aWw(r) (> 0)
0
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We calculate explicitly, WLOG, for s >t >0

X(8)X(t) = e P TOX2 + ge b X, [ e T aW (1)
oe "X [5 e tCTTAW (1) 4+ 02 [ e T dW (7 f e P =) dW (1)

Our trick to compute the expectation is to rewrite f e MM dW (1) = [3 Xjo.9e """ dW (r) and apply
(iv) from 4.2.3. Note that expectation for the two integrals in the mlddle equal 0 by (i7) from 4.2.3.

E(X(s)X(t)) :e*b<s+t>E(x2) oK < / ’ e PN AW (1) /O SX[07t]eb(tT)dW(7’)>

,b(s+t) b +02E (/ X[0.4€ b(s+t27)d7_)
0

7b(s+t) ( 0,2 e2b‘rd7_>
0
o b(s+1) ‘7 26t
55 )

2
— 9 —blt—s]
2

The last equality holds by our choice s >t > 0.

(i) Consider the ODE
t=12% (t>0)
2(0) = xg

Show that if zg > 0, the solution blows up to infinity in finite time.

Answer: Recall Local Existence and Uniqueness Theory of 1st Order Non-linear ODE, as z? and
)
ox
to the Initial Value Problem. Then we directly calculate the separable ODE formally

22 = 2z are both defined and continuous around ¢ = 0, we know there exists unique local solution

fx’de = fldt

so that we obtain —z~! =t + C. Plugging in the initial value we arrive at C = —z !, which makes

sense as xo > 0. Therefore the local solution has the form z(t) = for some finite interval

a: t 1
around ¢ = 0. Now clearly as ¢ approach x, ! from the left, the solution explodes to infinity.

(ii) Next, look at the ODE
i=x2 (t>0)
z(0)=0

Show that this problem has infinitely many nonnegative solutions.

Answer: It is obvious that x = 0 is a solution. We calculate the separable ODE formally
[z~ 2de = [1dt

and obtain 227 =t + C. Plugging in 2(0) = 0 we have C' = 0, and thus z(t) = % is also a solution to

the ODE. The problem now lies in how we combine the above 2 solutions to generate infinitely many

solutions. We implement the idea of right translation to the solution z(t) = %. To do so, we define

1
To = =0 o any C' > 0, and observe that zc = % =z for any t > C. We then can paste the

t—0)*?

= (620
0 (0<t<(O)
our original Initial Value Problem. But C' > 0 is arbitrary, so we have infinitely many nonnegative

left with £ = 0 and define a new solution x¢o = We observe this is solution to

solutions.



43

(i)

44

45

Use the substitution X = u(W) to solve the SDE

dX = e 2Xdt + e XdW
X(O) =T

Answer: Since u(W) = X, we have u; = 0. Plugging into It6 formula, we have
1
dX = u,(W)dW + ium(W)dt

Thus we equate u, (W) = e=X = e~*M)_ We solve the separable ODE formally

/e“du: /1d:ﬂ

and obtain e* = x + C. Plugging in initial value u(0) = X (0) = x¢, we have e¢“(*) = z + e%0. Then
taking logarithm on both sides, we have

u(x) = log(z + €*°)
Plugging in x = W, we arrive at
X =u(W) = log(W + e*)

We check our calculation by seeing

Show that the solution blows up at a finite, random time.

Answer: By our explicit solution X = u(W) = log(W + ™), it suffices to show that W reaches
—e® for some finite time almost surely. We know for simple random walk S,, = 2?21 X; where X
are i.i.d. Bernoulli Random Variables, we have for any C' < oo, P{inf{n >0| S, = C} < oo} = 1.
Then for Brownian Motion W as limit of \S,, by construction, it indeed inherits the property and has
P{inf{t > 0| W(t) = C} < oo} = 1. Take C' = —e™.

Solve the SDE dX = —Xdt + e 'dW

Answer: Note that this is Linear SDE in the narrow sense. We directly apply Theorem 5.4.2 (i)
choosing ¢ = 0, D = —1, and E(t) = ¢!, with arbitrary initial condition X (0) = X,. We have the

solution in explicit form
t
X(t)=e"Xo+ / e~ e qW = et Xy 4+ e W (1)
0

Let W = (Wl, w2, ... ,W”) be n-dimensional Brownian Motion and write

R:=[W|= <Z<Wi>2>

i=1

Show that R solves the Stochastic Bessel Equation

n—1 " wi
AR = dt AW’
R T ; R
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Answer: We write R = w(W,t) = u(W' .- W) = (X0, (WH?)2.
uy = 0 and for any 4,5 € {1,--- ,n}

We immediately have

w di;  W'WJ
Ug; = 5~ Uz,z; = 75 —

R R3

0 (#J)

chain rule in dimension n from 4.4.2. we have

=S £ o S (O
i=1 i=1 i=1

=1

1 (i=y
for 0;; = { (Z 7) Also Note dW = GdW for G = I, the n x n identity matrix. Then by Itd’s

We conclude by observing that >, (V;?z = %

46 (i) Show that X = (cos(W),sin(W)) solves the system of SDE

dX' = —1X'dt — X2aW
dX? = —1X2%dt + X'dw

Answer: By direct computation

1
dcos(W) = —sin(W)dW — B cos(W)dt

1
dsin(W) = cos(W)dW — 3 sin(W)dt

(ii) Show also that if X = (X!, X?) is any other solution, then |X| is constant in time.
Answer: It suffices to show that d |X|* = d ((X1)2 + (X?)?) = 0. Notice

d((X")?) =2X1X" + (dX")? = 2X 1 dX" + (X?)%dt = ((X?) — (X1)?) dt — 2X' X2dW
d((X?)?) = 2X?%dX? + (dX?)* = 2X%dX? + (X')%dt = ((X")? — (X?)?) dt + 2X' X?dW

Summing up gives d ((X*)? + (X?)?) = 0. Note we used the formal cancellation rule from 4.4.3.

that
(dt)? =0
dtdW =0
(dW)? = dt

47 Solve the system of SDE
dX' = dt +dw?
dX? = X1dw?

where W = (Wl, W2) is 2-dimensional Brownian Motion.
Answer: We integral w.r.t. to the first equation to obtain X! = ¢+ W + X{ for some initial value

X1(0) = X§. Then plugging directly into the second equation, we get
dX? = tdW? + WHW? + X dW? = d(tW?) — W2dt + WHdW? + X3dw?

Thus integrating w.r.t. the second equation we have

t t
X2:tW2—/ W2dt+/ Wdw? + XWw? + X§
0 0
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for some initial value X?2(0) = X¢&.
Solve the system of SDE
dX' = X2dt + dW!
dX? = X'dt + dW?
where W = (Wl, W2) is 2-dimensional Brownian Motion.

Answer: Note that this is Linear system of SDE in the narrow sense. We directly apply Theorem 5.4.2

1 1
(i) choosing ¢ = (8), D= <(1) O)’ and E = <O ?), with arbitrary initial condition X(0) = Xo.

We have the solution in explicit form

t dWl
X(t) = DtX / D(t—s)
(t)=e o+ | e dW?

Dt ._ oo  DF¢F

where the matrix exponential is defined as e™" := ) ;= ; =~ In fact we can calculate the exponential

0 1
explicitly. First we find for matrix D = <1 0 its eigenvalues Ay = 1, Ay = —1 and the corresponding

-1
1 1 1 1 1 0 1 1
eigenvectors v, = , Uy = , then diagonalize D = , where
1 -1 1 -1 0 -1 1 -1

-1
1 1 _ % %l ' Thus Pt — 1 1 et 91 % %1 _ C?sh(t) sinh(t) for
1 -1 : -3 1 =-1/\0 e 5 —3 sinh(¢) cosh(t)
X!
cosh(t) = % (e! +e~t) and sinh(t) = % (et — e~ ). Thus, for arbitrary initial condition X(0) = on ,
0

X(#) = cosh(t)Xo! + sinh(t)Xo? n /t cosh(t — 8)dW1 + sinh(t — s)dW?
~ \sinh(t)Xo" + cosh(t)Xg? o \sinh(¢t — s)dW?! + cosh(t — s)dW?

Solve
dX = 1o/ (X)o(X)dt + o(X)dW
X(0)=0

where W is one-dimensional Brownian Motion and ¢ is a smooth, positive function.
Answer: We define f(x) := fox % and set g := f~1. The inverse function g makes sense because o
is positive function, so f is strictly increasing. Then notice

Thus we observe by It6 formula

1 1
dg(W) = g'(W)dW + 59" (W)dt = o (9(W)) dW + 50" (9(W)) 7 (9(W)) dt

We notice g(W(0)) = g(0) = f~1(0) =0, so X = g(W) is indeed a solution to our problem. Finally,
we check that our problem satisfies the condition for Theorem 5.2.3. as ¢ is smooth, so we admit
unique solution X = ¢g(W) over certain time interval.

Let 7 be the first time a one-dimensional Brownian Motion W (-) hits the half-open interval (a, b].
Show that 7 is a stopping time.

Answer: Note 7 = inf{t > 0|W(t) € (a,b]}. We define our probability space (Q,U,P) and our

filtration F(-) w.r.t. the Brownian Motion W(-). Recall that a random variable is a stopping time
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w.r.t. filtration F(-) if {7 < ¢} € F(¢) for all t > 0. We take a countable dense subset {¢;};,en C [0, 00),
and rewrite
~ 1
{r<tt=UJWt)e@v=) Jww) e (a,b—i— n)}
t;<t n=1t;<t

But by definition of filtration F(-), we have
FR)DWE) :=UW(s)|0<s<t) VE>0

Thus {W(t;) € (a,b+ 1)} € F(t;) € F(t) for any t; < t, and so {7 < t} € F(t). Finally notice

{r<t}= ﬁ{T<t+%}€ ﬁ]—"(t—l—%):f(t)
n=1

n=1
where the last inequality holds by assumption. This concludes our proof.

Let W denote n-dimensional Brownian Motion for n > 3. Let X = W + zy where 2, € U = {0 <
Ry < |z| < Rs}. Calculate explicitly the probability that X will hit the outer sphere {|z| = Rz}
before hitting the inner sphere {|z| = R1}.

Answer: We apply Example 3 from 6.2.1. defining the two disjoint regions I'y = {|z| = Rz} and

Ty = {|]z| = R1}. They we construct boundary value problem for Laplace Equation

Au=0 inU={0< R; < |z| < Ry}
u=1 onT;={z| =R}
u=0 onTy={lz| =Ry}

and we know the explicit solution u is the probability of X hitting I'y before hitting I's. We building
P (x)—P(R1)
@ (R2)—®(R1)
our u satisfies the boundary values.

the solution u = where ®(z) := |z|>™", since ®(z) := |&|*”" is harmonic function and



