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39 Let u = u(x, t) be a smooth solution of the backwards diffusion equation

ut +
1

2
uxx = 0

Let W (·) be one-dimensional Brownian motion. Show that for each time t > 0, E(u(W (t), t)) = u(0, 0).

Answer: Note by Itô formula, we have du(X, t) = utdt+uxdX+ 1
2uxxdXdX, where in our case, X = W (t),

so dX = 1dW . Since Brownin Motion has quadratic variation, i.e., dWdW = dt, our formula reduces to

du(W, t) = (ut +
1
2uxx)dt + uxdW . Notice u satisfies backwards diffusion equation, so du(W, t) = uxdW .

We integrate on both sides from 0 to t to obtain u(W, t)−u(0, 0) =
∫ t

0
uxdW . Since u(X, t) is smooth over

t, in particular, for any fixed time t, u ∈ L2(0, t). Then we have E(
∫ t

0
uxdW ) = 0 by theorem from 4.2.3.

Applying expectation on both sides gives E(u(W (t), t)) = u(0, 0).

40 Calculate E(B2(t)) for the Brownian Bridge B(·), and show in particular that E(B2(t)) → 0 as t → 1−.

Answer: Recall example 4 from 5.1.2. the solution to the Brownian Bridge Initial Value problem{
dB = − B

1−tdt+ dW (0 ≤ t < 1)

B(0) = 0

has the form

B(t) = (1− t)

∫ t

0

1

1− s
dW (0 ≤ t < 1)

We calculate

EB2 = (1− t)2 E(
∫ t

0
1

1−sdW )2 = (1− t)2 E(
∫ t

0
1

(1−s)2 ds)

The second equality holds for Itô Isometry from 4.2.3. Then we apply a change of variable η = 1 − s to

obtain

EB2 = (1− t)2
∫ 1

1−t

1

η2
dη = (1− t)2

(
−1

η

∣∣∣∣1
1−t

)
= (1− t)2

(
1

1− t
− 1

)
= 1− t− (1− t)2

Thus as t → 1−, E(B2(t)) → 0.

41 Let X solve the Langevin Equation, and X0 ∼ N (0, σ2

2b ). Show that E(X(s)X(t)) = σ2

2b e
−b|t−s|.

Answer: Recall example 5 from 5.1.2. the solution to the Langevin Equation Initial Value problem{
dX = −bXdt+ σdW

X(0) = X0

for b > 0 friction coefficient and σ ∈ R diffusion coefficient has the form

X(t) = e−btX0 + σ

∫ t

0

e−b(t−τ)dW (τ) (t ≥ 0)

1



We calculate explicitly, WLOG, for s > t ≥ 0

X(s)X(t) = e−b(s+t)X2
0 + σe−bsX0

∫ t

0
e−b(t−τ)dW (τ)

+σe−btX0

∫ s

0
e−b(s−τ)dW (τ) + σ2

∫ s

0
e−b(s−τ)dW (τ)

∫ t

0
e−b(t−τ)dW (τ)

Our trick to compute the expectation is to rewrite
∫ t

0
e−b(t−τ)dW (τ) =

∫ s

0
χ[0,t]e

−b(t−τ)dW (τ) and apply

(iv) from 4.2.3. Note that expectation for the two integrals in the middle equal 0 by (ii) from 4.2.3.

E(X(s)X(t)) = e−b(s+t) E(X2
0 ) + σ2 E

(∫ s

0

e−b(s−τ)dW (τ)

∫ s

0

χ[0,t]e
−b(t−τ)dW (τ)

)
= e−b(s+t) · σ

2

2b
+ σ2 E

(∫ s

0

χ[0,t]e
−b(s+t−2τ)dτ

)
= e−b(s+t)

(
σ2

2b
+ σ2

∫ t

0

e2bτdτ

)
= e−b(s+t)

[
σ2

2b
+

σ2

2b

(
e2bt − 1

)]
=

σ2

2b
e−b|t−s|

The last equality holds by our choice s > t ≥ 0.

42 (i) Consider the ODE {
ẋ = x2 (t > 0)

x(0) = x0

Show that if x0 > 0, the solution blows up to infinity in finite time.

Answer: Recall Local Existence and Uniqueness Theory of 1st Order Non-linear ODE, as x2 and
∂
∂xx

2 = 2x are both defined and continuous around t = 0, we know there exists unique local solution

to the Initial Value Problem. Then we directly calculate the separable ODE formally

∫
x−2dx =

∫
1dt

so that we obtain −x−1 = t + C. Plugging in the initial value we arrive at C = −x−1
0 , which makes

sense as x0 > 0. Therefore the local solution has the form x(t) = − x0

x0t−1 for some finite interval

around t = 0. Now clearly as t approach x−1
0 from the left, the solution explodes to infinity.

(ii) Next, look at the ODE {
ẋ = x

1
2 (t > 0)

x(0) = 0

Show that this problem has infinitely many nonnegative solutions.

Answer: It is obvious that x ≡ 0 is a solution. We calculate the separable ODE formally

∫
x− 1

2 dx =
∫
1dt

and obtain 2x
1
2 = t+C. Plugging in x(0) = 0 we have C = 0, and thus x(t) = t2

4 is also a solution to

the ODE. The problem now lies in how we combine the above 2 solutions to generate infinitely many

solutions. We implement the idea of right translation to the solution x(t) = t2

4 . To do so, we define

xC = (t−C)2

4 for any C ≥ 0, and observe that ẋC = t−C
2 = x

1
2

C for any t ≥ C. We then can paste the

left with x ≡ 0 and define a new solution xC =

{
(t−C)2

4 (t ≥ C)

0 (0 ≤ t < C)
We observe this is solution to

our original Initial Value Problem. But C ≥ 0 is arbitrary, so we have infinitely many nonnegative

solutions.



43 (i) Use the substitution X = u(W ) to solve the SDE{
dX = − 1

2e
−2Xdt+ e−XdW

X(0) = x0

Answer: Since u(W ) = X, we have ut = 0. Plugging into Itô formula, we have

dX = ux(W )dW +
1

2
uxx(W )dt

Thus we equate ux(W ) = e−X = e−u(W ). We solve the separable ODE formally∫
eudu =

∫
1dx

and obtain eu = x + C. Plugging in initial value u(0) = X(0) = x0, we have eu(x) = x + ex0 . Then

taking logarithm on both sides, we have

u(x) = log(x+ ex0)

Plugging in x = W , we arrive at

X = u(W ) = log(W + ex0)

We check our calculation by seeing

−1

2
e−2X = − 1

2 (W + ex0)
2 =

1

2
uxx(W )

(ii) Show that the solution blows up at a finite, random time.

Answer: By our explicit solution X = u(W ) = log(W + ex0), it suffices to show that W reaches

−ex0 for some finite time almost surely. We know for simple random walk Sn =
∑n

i=1 Xi where Xi

are i.i.d. Bernoulli Random Variables, we have for any C < ∞, P{inf{n ≥ 0| Sn = C} < ∞} = 1.

Then for Brownian Motion W as limit of Sn by construction, it indeed inherits the property and has

P{inf{ t ≥ 0| W (t) = C} < ∞} = 1. Take C = −ex0 .

44 Solve the SDE dX = −Xdt+ e−tdW

Answer: Note that this is Linear SDE in the narrow sense. We directly apply Theorem 5.4.2 (i)

choosing c ≡ 0, D ≡ −1, and E(t) = e−t, with arbitrary initial condition X(0) = X0. We have the

solution in explicit form

X(t) = e−tX0 +

∫ t

0

e−(t−s)e−sdW = e−tX0 + e−tW (t)

45 Let W =
(
W 1,W 2, · · · ,Wn

)
be n-dimensional Brownian Motion and write

R := |W| =

(
n∑

i=1

(W i)2

) 1
2

Show that R solves the Stochastic Bessel Equation

dR =
n− 1

2R
dt+

n∑
i=1

W i

R
dW i



Answer: We write R = u(W, t) = u(W 1, · · · ,Wn, t) =
(∑n

i=1(W
i)2
) 1

2 . We immediately have

ut = 0 and for any i, j ∈ {1, · · · , n}

uxi =
W i

R
, uxixj =

δij
R

− W iW j

R3

for δij =

{
1 (i = j)

0 (i ̸= j)
Also Note dW = GdW for G = In the n×n identity matrix. Then by Itô’s

chain rule in dimension n from 4.4.2. we have

du(W, t) =

n∑
i=1

uxi
dW i +

1

2

n∑
i=1

uxixi
dt =

n∑
i=1

W i

R
dW i +

1

2

n∑
i=1

(
1

R
− (W i)2

R3

)
dt

We conclude by observing that
∑n

i=1
(W i)2

R3 = 1
R .

46 (i) Show that X = (cos(W ), sin(W )) solves the system of SDE{
dX1 = − 1

2X
1dt−X2dW

dX2 = − 1
2X

2dt+X1dW

Answer: By direct computation

d cos(W ) = − sin(W )dW − 1

2
cos(W )dt

d sin(W ) = cos(W )dW − 1

2
sin(W )dt

(ii) Show also that if X = (X1, X2) is any other solution, then |X| is constant in time.

Answer: It suffices to show that d |X|2 = d
(
(X1)2 + (X2)2

)
= 0. Notice

d((X1)2) = 2X1dX1 + (dX1)2 = 2X1dX1 + (X2)2dt =
(
(X2)2 − (X1)2

)
dt− 2X1X2dW

d((X2)2) = 2X2dX2 + (dX2)2 = 2X2dX2 + (X1)2dt =
(
(X1)2 − (X2)2

)
dt+ 2X1X2dW

Summing up gives d
(
(X1)2 + (X2)2

)
= 0. Note we used the formal cancellation rule from 4.4.3.

that 
(dt)2 = 0

dtdW = 0

(dW )2 = dt

47 Solve the system of SDE {
dX1 = dt+ dW 1

dX2 = X1dW 2

where W =
(
W 1,W 2

)
is 2-dimensional Brownian Motion.

Answer: We integral w.r.t. to the first equation to obtain X1 = t+W 1 +X1
0 for some initial value

X1(0) = X1
0 . Then plugging directly into the second equation, we get

dX2 = tdW 2 +W 1dW 2 +X1
0dW

2 = d(tW 2)−W 2dt+W 1dW 2 +X1
0dW

2

Thus integrating w.r.t. the second equation we have

X2 = tW 2 −
∫ t

0

W 2dt+

∫ t

0

W 1dW 2 +X1
0W

2 +X2
0



for some initial value X2(0) = X2
0 .

48 Solve the system of SDE {
dX1 = X2dt+ dW 1

dX2 = X1dt+ dW 2

where W =
(
W 1,W 2

)
is 2-dimensional Brownian Motion.

Answer: Note that this is Linear system of SDE in the narrow sense. We directly apply Theorem 5.4.2

(i) choosing c ≡

(
0

0

)
, D ≡

(
0 1

1 0

)
, and E ≡

(
1 0

0 1

)
, with arbitrary initial condition X(0) = X0.

We have the solution in explicit form

X(t) = eDtX0 +

∫ t

0

eD(t−s)

(
dW 1

dW 2

)

where the matrix exponential is defined as eDt :=
∑∞

k=0
Dktk

k! . In fact we can calculate the exponential

explicitly. First we find for matrixD =

(
0 1

1 0

)
its eigenvalues λ1 = 1, λ2 = −1 and the corresponding

eigenvectors v1 =

(
1

1

)
, v2 =

(
1

−1

)
, then diagonalize D =

(
1 1

1 −1

)(
1 0

0 −1

)(
1 1

1 −1

)−1

, where(
1 1

1 −1

)−1

=

(
1
2

1
2

1
2 − 1

2

)
. Thus eDt =

(
1 1

1 −1

)(
et 0

0 e−1

)(
1
2

1
2

1
2 − 1

2

)
=

(
cosh(t) sinh(t)

sinh(t) cosh(t)

)
for

cosh(t) = 1
2 (e

t + e−t) and sinh(t) = 1
2 (e

t − e−t). Thus, for arbitrary initial conditionX(0) =

(
X0

1

X0
2

)
,

X(t) =

(
cosh(t)X0

1 + sinh(t)X0
2

sinh(t)X0
1 + cosh(t)X0

2

)
+

∫ t

0

(
cosh(t− s)dW 1 + sinh(t− s)dW 2

sinh(t− s)dW 1 + cosh(t− s)dW 2

)

49 Solve {
dX = 1

2σ
′(X)σ(X)dt+ σ(X)dW

X(0) = 0

where W is one-dimensional Brownian Motion and σ is a smooth, positive function.

Answer: We define f(x) :=
∫ x

0
dy
σ(y) and set g := f−1. The inverse function g makes sense because σ

is positive function, so f is strictly increasing. Then notice

g′(W ) =
(
f−1

)′
(W ) =

1
1

σ(f−1(W ))

= σ
(
f−1(W )

)
= σ (g(W ))

g′′(W ) = σ′ (g(W )) g′(W ) = σ′ (g(W ))σ (g(W ))

Thus we observe by Itô formula

dg(W ) = g′(W )dW +
1

2
g′′(W )dt = σ (g(W )) dW +

1

2
σ′ (g(W ))σ (g(W )) dt

We notice g(W (0)) = g(0) = f−1(0) = 0, so X = g(W ) is indeed a solution to our problem. Finally,

we check that our problem satisfies the condition for Theorem 5.2.3. as σ is smooth, so we admit

unique solution X = g(W ) over certain time interval.

50 Let τ be the first time a one-dimensional Brownian Motion W (·) hits the half-open interval (a, b].

Show that τ is a stopping time.

Answer: Note τ = inf{ t ≥ 0|W (t) ∈ (a, b]}. We define our probability space (Ω,U ,P) and our

filtration F(·) w.r.t. the Brownian Motion W (·). Recall that a random variable is a stopping time



w.r.t. filtration F(·) if {τ ≤ t} ∈ F(t) for all t ≥ 0. We take a countable dense subset {ti}i∈N ⊆ [0,∞),

and rewrite

{τ < t} =
⋃
ti<t

{W (ti) ∈ (a, b]} =

∞⋂
n=1

⋃
ti<t

{W (ti) ∈
(
a, b+

1

n

)
}

But by definition of filtration F(·), we have

F(t) ⊇ W(t) := U (W (s)|0 ≤ s ≤ t) ∀t ≥ 0

Thus {W (ti) ∈
(
a, b+ 1

n

)
} ∈ F(ti) ⊆ F(t) for any ti < t, and so {τ < t} ∈ F(t). Finally notice

{τ ≤ t} =

∞⋂
n=1

{τ < t+
1

n
} ∈

∞⋂
n=1

F(t+
1

n
) = F(t)

where the last inequality holds by assumption. This concludes our proof.

51 Let W denote n-dimensional Brownian Motion for n ≥ 3. Let X = W + x0 where xo ∈ U = {0 <

R1 < |x| < R2}. Calculate explicitly the probability that X will hit the outer sphere {|x| = R2}
before hitting the inner sphere {|x| = R1}.
Answer: We apply Example 3 from 6.2.1. defining the two disjoint regions Γ1 = {|x| = R2} and

Γ2 = {|x| = R1}. They we construct boundary value problem for Laplace Equation
∆u = 0 in U = {0 < R1 < |x| < R2}
u = 1 on Γ1 = {|x| = R2}
u = 0 on Γ2 = {|x| = R1}

and we know the explicit solution u is the probability of X hitting Γ1 before hitting Γ2. We building

the solution u = Φ(x)−Φ(R1)
Φ(R2)−Φ(R1)

where Φ(x) := |x|2−n
, since Φ(x) := |x|2−n

is harmonic function and

our u satisfies the boundary values.


