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1 Overview

Throughout Fall 2022, I read through whole Chapter 2 of Evans’s Textbook: Partial Differential Equations, and
a brief overview at Chapter 9 of Arnold’s Textbook: Mathematical Methods of Classical Mechanics. We manage
to have bi-weekly discussions, with a focus on Laplace, Heat, and Wave Equations. In particular, the topics
covered are listed below:

1. Transport Equation. Initial-value problem. Nonhomogeneous Initial-value problem.

2. Laplace Equation. Fundamental Solutions and solution to Poisson’s Equation. Mean Value Formulas.
Properties of Harmonic Functions. Green’s Function. Energy Methods.

3. Heat Equation. Fundamental Solutions, Initial-value problem and Nonhomogeneous problem. Mean-value
formula. Properties of Solutions. Energy Methods.

4. Wave Equation. Solution by spherical means. Nonhomogeneous problem. Energy Methods.

2 Evans Partial Differential Equations

2.1 Transport Equation

We solve the general solution to the transport equation ut + b ·Du = 0 in Rn × (0,∞) by constructing z(s) =
u(x + sb, t + s) for s ∈ R. We observe that d

dsz = 0, so u remains constant on the characteristic line through
(x, t) along the direction (b, 1).
In particular, we solve the same equation with initial value u = g constraint on Rn × {t = 0} by observing
z(−t) = u(x−tb, 0) = g(x−tb). Since u is constant along each characteristic line with direction (b, 1), and g gives
all values of u at the intercept of each line with the plane Rn ×{t = 0}, we construct solution u(x, t) = g(x− tb)
∀t ≥ 0 provided g is C1.
For Nonhomogeneous Initial-value problem, we solve for ut + b · Du = f in Rn × (0,∞) with initial
value constaint u = g on Rn × {t = 0}. We notice d

dsz = f(x + sb, t + s), so by fundamental theorem of

calculus, we obtain upon integration z(0)− z(−t) =
∫ 0

−t
f(x+ sb, t+ s)ds =

∫ t

0
f(x+ (s− t)b, s)ds, which gives

u(x, t) = g(x− tb) +
∫ t

0
f(x+ (s− t)b, s)ds.

2.2 Laplace Equation

We wish to study solution to Laplace Equation ∆u = 0, Poisson Equation −∆u = f and harmonic functions
that satisfy Laplace Equation.

2.2.1 Fundamental Solutions

We introduce radial solutions u(x) = v(r) where r = |x| =
√∑n

i=1 x
2
i . By direct computation, we obtain

∆u =
∑n

i=1 uxixi
= v

′′
(r) + v

′
(r)n−1

r . So putting v
′′
(r) + v

′
(r)n−1

r = 0 and solving for ordinary differential

equation, we have general solutions in radial form v(r) =

{
b log(r) + c n = 2

br2−n + c n ≥ 3
.

We choose the set of fundamental solutions for x ̸= 0 as Φ(x) =

{
− 1

2π log |x| n = 2
1

n(n−2)α(n) |x|
2−n n ≥ 3

, where α(n) = πn/2

Γ(n
2 +1)

is volume of unit ball B(0, 1) in Rn.



ForPoisson equation−∆u = f , we construct u(x) =
∫
Rn Φ(x−y)f(y)dy =

{
− 1

2π

∫
Rn log(|x− y|)f(y)dy n = 2

1
n(n−2)α(n)

∫
Rn |x− y|2−nf(y)dy n ≥ 3

and show that it is indeed solution and belongs to C2(Rn).

2.2.2 Mean-value Formulas

We now consider open set U ⊂ Rn and let u be harmonic function within U . We establish a uniqueness
characterization for harmonic functions, known as the mean-value property.

Theorem 2.1 (Mean Value Formula). If u ∈ C2(Rn) is harmonic, then ∀ ball B(x, r) ⊂ U , we have

u(x) =
1

nα(n)rn−1

∫
∂B(x,r)

udS =
1

α(n)rn

∫
B(x,r)

udy (1)

And conversely, we have the characterization for harmonic functions

Theorem 2.2. If ∀ ball B(x, r) ⊂ U , u ∈ C2(Rn) satisfies

u(x) =
1

nα(n)rn−1

∫
∂B(x,r)

udS (2)

then u is harmonic in U .

2.2.3 Properties of harmonic functions

Assume open, bounded set U ⊂ Rn. We first establish the maximum principles for harmonic functions, i.e.,
harmonic functions attain maximum only on boundary, otherwise they are constant.

Theorem 2.3 (Maximum principle). u ∈ C2(U) ∩ C(U) is harmonic within U , then maxUu = max∂Uu.

Theorem 2.4 (Strong Maximum principle). Moreover, if U is connected and exists x0 ∈ U s.t. u(x0) = maxUu
then u is constant within U .

The maximum principles are direct results from Mean-value property. And following from maximum principles,
we establish positivity and uniqueness of solutions.

Theorem 2.5 (Positivity). If U is connected and u ∈ C2(U)∩C(U) satisfies

{
∆u = 0 in U

u = g on ∂U
where g ≥ 0,

then u is positive everywhere in U if g is positive somewhere on ∂U .

Theorem 2.6 (Uniqueness). g ∈ C(∂U) and f ∈ C(U), then there exist at most one solution u ∈ C2(U)∩C(U)

satisfying

{
−∆u = f in U

u = g on ∂U

Next, we discuss the regularity theorem, where the algebraic structure of harmonic functions automatically gives
infinitely differentiable. Moreover, harmonic functions are analytic.

Theorem 2.7 (Regularity). If u ∈ C(U) satisfies mean value property ∀B(x, r) ⊂ U , then u ∈ C∞(U). (Note
that u may not be smooth, or even continuous up to ∂U)

The mean-value formulas provide pointwise local estimates on various partial derivatives of a harmonic function.

Theorem 2.8 (Estimates on derivatives). If u is harmonic in U , then |Dαu(x0)| ≤ (2n+1nk)k

α(n)rn+k ||u||L1(B(x0,r) for

each B(x0, r) ⊂ U and each multiindex α with order |α| = k for k = 1, · · ·

With precise estimates of partial derivatives, we have analyticity.

Theorem 2.9 (Analyticity). If u is harmonic in U , then u is analytic in U .

Finally we see two important theorems derived from the known properties of harmonic functions. We observe
harmonic functions on either V ⊂ V ⊂ U or Rn.



Theorem 2.10 (Harnack’s Inequality). For each connected open set V ⊂ V ⊂ U , there exists a positive constant
C depending only on V , s.t., supV u ≤ CinfV u for all nonnegative harmonic functions u in U . In particular,
∀x, y ∈ V , we have 1

Cu(y) ≤ u(x) ≤ Cu(y)

Harnack’s inequality asset that values of a nonnegative function u within V are all comparable. As V has a
positive distance away from ∂U , there is room for averaging effects of Laplace equation. Now from another
perspective, we study bounded harmonic functions on Rn.

Theorem 2.11 (Liouville’s Theorem). If u : Rn → R is harmonic and bounded, then u is constant.

This means there are no nontrivial bounded harmonic functions on all of Rn. In particular, if u instead solves
Poisson Equation, we have a corresponding result for n ≥ 3.

Theorem 2.12 (Representation formula). If f ∈ C2
C(Rn), n ≥ 3, then any bounded solution to −∆u = f in Rn

has the form u(x) =
∫
Rn Φ(x− y)f(y)dy + C for x ∈ Rn for some constant C.

2.2.4 Green’s Function

We consider open set U ⊂ Rn with ∂U is C1. Next we obtain general representation formula for solution of

Poisson Equation with prescribed boundary condition

{
−∆u = f in U

u = g on ∂U

We first derive the identity that solves the above problem with u ∈ C2(U)

u(x) =

∫
∂U

Φ(y − x)
∂u

∂υ
(y)− u(y)

∂Φ

∂υ
(y − x)dS(y)−

∫
U

Φ(y − x)∆u(y)dy (3)

where Φ is fundamental solution. We know values of ∆u within U and u on ∂U from the construction of boundary
problem, but not the value ∂u

∂υ on ∂U . In order to remove this term, we introduce a corrector function ϕx = ϕx(y)

for each fixed x s.t. ϕx =

{
∆ϕx = 0 in U

ϕx = Φ(y − x) on ∂U
, and thus equate the last term in the above identity with

corrector function, i.e., −
∫
U
Φ(y − x)∆u(y)dy = −

∫
U
ϕx(y)∆u(y)dy. Then by applying Green’s Formula once,

we get rid of the term in the identity that involves ∂u
∂υ on ∂U . We further introduce Green’s function.

Definition 2.13. Green’s Function for region U is G(x, y) := Φ(y − x)− ϕx(y) is for x, y ∈ U, x ̸= y

and can simply the identity into

u(x) = −
∫
∂U

u(y)
∂G

∂υ
(x, y)dS(y)−

∫
U

G(x, y)∆u(y)dy (4)

Going back to the original problem, we develop our representation formula using Green’s Function

Theorem 2.14 (Representation formula using Green’s Function). If u ∈ C2(U) solves

{
−∆u = f in U

u = g on ∂U
,

then

u(x) = −
∫
∂U

g(y)
∂G

∂υ
(x, y)dS(y) +

∫
U

G(x, y)f(y)dy (x ∈ U)

Now the question lies in the construction of Green’s Function for a given region U . Special cases are applicable
when U has simple geometry. Before the examples, we note that Green’s Function is symmetric, i.e., G(x, y) =
G(y, x) ∀x, y ∈ U, x ̸= y.
Now we consider two simple regions, the half plane and a ball. If we have region

U = Rn
+ := {x = (x1, · · · , xn) ∈ Rn|xn > 0} (5)

we can define a reflection for x = (x1, · · · , xn) ∈ Rn
+ w.r.t. the plane ∂Rn

+ as x̃ = (x1, · · · , xn−1,−xn). We
build corrector function by reflecting the singularity point from x ∈ Rn

+ to x̃ /∈ Rn
+ by ϕx(y) := Φ(y − x̃) for

x, y ∈ Rn
+, and ϕx(y) := Φ(y − x) for y ∈ ∂Rn

+. It is indeed corrector function by definition, and so we define
Green’s function for the half-plane Rn

+ as G(x, y) = Φ(y − x)− Φ(y − x̃) for x, y ∈ Rn
+, x ̸= y.



We now plug in the representation formula using Green’s function, and obtain the solution for Laplace equation

with boundary condition

{
∆u = 0 in Rn

+

u = g on ∂Rn
+

as

u(x) =
2xn

nα(n)

∫
∂Rn

+

g(y)

|x− y|n
dy =

∫
∂Rn

+

K(x, y)g(y)dy (x ∈ Rn
+)

upon defining the Poisson’s kernel for Rn
+ as K(x, y) = 2xn

nα(n)
1

|x−y|n . The solution is known as the Poisson’s

formula for Rn
+.

On the other hand, for U = B(0, 1), we define for x ∈ Rn − {0} its dual point w.r.t. ∂B(0, 1) as x̃ = x
|x|2 , which

is inversion through unit sphere ∂B(0, 1). We define ϕx(y) := Φ(|x|(y − x̃)) for y ∈ B(0, 1). ϕx(y) is indeed
corrector function since ϕx(y) := Φ(y − x) for y ∈ ∂B(0, 1). Then we have Green’s function on a unit ball as
G(x, y) := Φ(y−x)−Φ(|x|(y− x̃)) for x, y ∈ B(0, 1), x ̸= y. We plug in the representation formula using Green’s

function, and obtain the solution for Laplace equation with boundary condition

{
∆u = 0 in B(0, 1)

u = g on ∂B(0, 1)
as

u(x) =
1− |x|2

nα(n)

∫
∂B(0,1)

g(y)

|x− y|n
dS(y) (6)

From here, instead of on unit ball, we can define solution on B0(0, r), the open ball with radius r, which solves

the corresponding problem

{
∆u = 0 in B0(0, r)

u = g on ∂B(0, r)
. An easy approach would be defining ũ(x) = u(rx) and

g̃(x) = g(rx) and replace them with the previous problem. We further obtain

u(x) =
r2 − |x|2

nα(n)r

∫
∂B(0,r)

g(y)

|x− y|n
dS(y) =

∫
∂B(0,r)

K(x, y)g(y)dS(y) (x ∈ B0(0, r))

upon defining the Poisson’s kernel for the ball B0(0, r) as K(x, y) = r2−|x|2
nα(n)r

1
|x−y|n . The solution is known as the

Poisson’s formula for B0(0, r).

2.2.5 Energy Method

We look from the ”energy” perspective at harmonic functions, i.e., with techniques involving the L2-norms of
various expressions. We first restate the uniqueness theorem.

Theorem 2.15 (Uniqueness with Energy Method). There exists at most one solution of u ∈ C2(U) that solves{
−∆u = f in U

u = g on ∂U
for U open, bounded, and ∂U is C1.

Proof. Suppose ũ is another solution, define w := u− ũ. We see ∆w = 0 in U . Thus

0 = −
∫
U

w∆wdx =

∫
U

Dw ·Dwdx−
∫
∂U

w
∂w

∂υ
dS(x) =

∫
U

|Dw|2dx (7)

So |Dw| = 0 within U . And since w = 0 on ∂U , we deduce w = u− ũ is constant equal to 0 in U .

Also, the solution to

{
−∆u = f in U

u = g on ∂U
is actually minimizer of energy functional I[w] :=

∫
U

1
2 |Dw|2−wfdx

with w ∈ A := {w ∈ C2(U) |w = g on ∂U}.

Theorem 2.16 (Dirichlet’s Principle). Let u ∈ C2(U) solve

{
−∆u = f in U

u = g on ∂U
, then I[u] = minw∈AI[w].

Conversely, if u ∈ A, then it solves the boundary-value problem.

Essentially, if u ∈ A, that u solves Poisson Equation is equivalent to u minimizes the energy I.



2.3 Heat Equation

We wish to study Heat Equation ut −∆u = 0 and nonhomogeneous heat equation ut −∆u = f .

2.3.1 Fundamental Solution

We look for solution of the form u(x, t) = v( |x|
2

t ) = v( r
2

t ), since u(λx, λ2t) and u(x, t) solve the same equation
ut − ∆u = 0. In particular, we look for u(x, t) = 1

tα v(
x
tβ
) = 1

tα v(y) with hint that u should remain invariant
under dilation scaling. It suffices to determine appropriate constants α, β and the function v to give a general
solution.
We insert the expression into heat equation and if we take β = 1

2 , we reduce the expression into αv+ 1
2y·Dv+∆v =

0. We further simplify by taking v to be radial, i.e., w(|y|) = v(y), and transform the expression into
αw + 1

2rw
′
+ w

′′
+ n−1

r w
′
= 0. Now take α = n

2 , we solve for ordinary differential equation and derive the

solution w = be−
r2

4 for some constant b. We conclude that u(x, t) = b

t
n
2
e−

|x|2
4t solves Heat Equation.

We define our fundamental solution to Heat Equation as Φ(x, t) =

 1

(4πt)
n
2
e−

|x|2
4t x ∈ Rn, t > 0

0 x ∈ Rn, t < 0
and notice at

once that for fixed t > 0, the fundamental solution satisfies
∫
Rn Φ(x, t)dx = 1.

For the initial-value (or Cauchy) problem

{
ut −∆u = 0 in Rn × (0,∞)

u = g on Rn × {t = 0}
, we construct solution as

u(x, t) =
∫
Rn Φ(x − y, t)g(y)dy = 1

(4πt)
n
2

∫
Rn e−

|x−y|2
4t g(y)dy. We notice if g(y) is bounded, continuous, non-

negative and not constant 0, then u is positive for all points x ∈ Rn and t > 0. We interpret this observation as
heat equation forces infinite propagation speed for disturbances.

For nonhomogeneous problem

{
ut −∆u = f in Rn × (0,∞)

u = 0 on Rn × {t = 0}
we construct our solution using Duhamel’s

principle. We first define u(x, t; s) =
∫
Rn Φ(x− y, t− s)f(y, s)ds, and obtain our solution by integrating from 0

to t, i.e, u(x, t) =
∫ t

0
u(x, t; s)ds =

∫ t

0
1

(4πt)
n
2

∫
Rn e−

|x−y|2
4t f(y, s)dyds for x ∈ Rn and t > 0.

For nonhomogeneous problem with general initial data

{
ut −∆u = f in Rn × (0,∞)

u = g on Rn × {t = 0}
we combine

the two previous cases and discover u(x, t) =
∫
Rn Φ(x− y, t)g(y)dy +

∫ t

0

∫
Rn Φ(x− y, t− s)f(y, s)dyds

2.3.2 Mean-value Formulas

Let U ⊂ Rn be open and bounded, fix T > 0. We define the parabolic cylinder as UT := U × (0, T ] and its
parabolic boundary as ΓT := UT − UT .
If we regard ∂B(x, r) as level sets of the fundamental solutions Φ(x− y) for Laplace equation, we construct an
analogue of level set of fundamental solution Φ(x− y, t− s) for Heat Equation, known as the Heat ball.

Definition 2.17. For fixed x ∈ Rn, t ∈ R, r > 0, we define Heat ball

E(x, t; r) := {(y, s) ∈ Rn+1|s ≤ t,Φ(x− y, t− s) ≥ 1

rn
} (8)

We obtain the analogue for Mean-value property on Heat ball

Theorem 2.18 (Mean-value Property for Heat Equation). Let u ∈ C2
1 (UT ) solve the heat equation, then for

each E(x, t; r) ⊂ UT , we have u(x, t) = 1
4rn

∫∫
E(x,t;r)

u(y, s) |x−y|2
(t−s)2 dyds

2.3.3 Properties of solutions

We first employ mean-value property to give maximum principles.

Theorem 2.19 (Maximum principle). Let u ∈ C2
1 (UT )∩C(UT ) solve the heat equation in UT , then maxUT

u =
maxΓT

u

Theorem 2.20 (Strong Maximum principle). Moreover, if U is connected and exists (x0, t0) ∈ UT s.t. u(x0, t0) =
maxUT

u, then u is constant within U t0 .



This means if u attains maximum or minimum at an interior point, then u is constant at all earlier times. We
immediately observe infinite propagation speed again.

Theorem 2.21 (Positivity). If U connected and u ∈ C2
1 (UT )∩C(UT ) solves


ut −∆u = 0 in UT

u = 0 on ∂U × [0, T ]

u = g on U × {t = 0}
where

g ≥ 0, then u is positive everywhere within UT if g is positive somewhere.

We also have uniqueness theorem as important application of maximum principle.

Theorem 2.22 (Uniqueness on bounded domains). Let g ∈ C(ΓT ), f ∈ C(UT ), then there exists at most one

solution u ∈ C2
1 (UT ) ∩ C(UT ) of initial/boundary-value problem

{
ut −∆u = f in UT

u = g on ΓT

We now extent previous theorems to the Cauchy Problem, that is, initial-value problem for U = Rn. Since we
no longer have a bounded region, we need control on the behavior of solutions for large |x|.

Theorem 2.23 (Maximum principle for Cauchy Problem). Let u ∈ C2
1 (Rn × (0, T ]) ∩ C(Rn × [0, T ]) solve{

ut −∆u = 0 in Rn × (0, T )

u = g on Rn × {t = 0}
that satisfies the growth rate u(x, t) ≤ Aea|x|

2

for x ∈ Rn , 0 ≤ t ≤ T and

constants A, a > 0, then we have supRn×[0,T ]u = supRng

Theorem 2.24 (Uniqueness for Cauchy Problem). Let g ∈ C(Rn) and f ∈ C(Rn × [0, T ]), then there exists at

most one solution u ∈ C2
1 (Rn×(0, T ])∩C(Rn×[0, T ]) solving the initial-value problem

{
ut −∆u = f in Rn × (0, T )

u = g on Rn × {t = 0}
with growth rate u(x, t) ≤ Aea|x|

2

for x ∈ Rn , 0 ≤ t ≤ T and constants A, a > 0.

Also, we derive that heat equations are automatically smooth.

Theorem 2.25 (Smoothness). Let u ∈ C2
1 (UT ) solve heat equation in UT , then u ∈ C∞(UT ).

Note that the regularity assertion is valid even if u attains nonsmooth boundary values on ΓT . In particular, we
have local estimates on derivatives of solutions.

Theorem 2.26 (Estimates on derivatives). There exists for each pais of integers k, l = 0, · · · a constant Ckl s.t.

maxC(x,t; r2 )
|Dk

xD
l
tu| ≤

Ckl

rk+2l+n+2
||u||L1(C(x,t;r)) (9)

for all cylinders C(x, t; r
2 ) ⊂ C(x, t; r) ⊂ UT and all solutions u of heat equation in UT

2.3.4 Energy Method

We again investigate the initial/boundary value problem

{
ut −∆u = f in UT

u = g on ΓT

and prove alternatively by

integration by parts.

Theorem 2.27 (Uniqueness with Energy Method). There exist only one solution u ∈ C2
1 (UT ) of initial/boundary-

value problem.

Proof. If ũ is another solution to the problem, we construct w := u − ũ as solution. Define energy e(t) :=∫
U
w2(x, t)dx for 0 ≤ t ≤ T , then

de

dt
= 2

∫
U

wwtdx (10)

= 2

∫
U

w∆wdx (11)

= −2

∫
U

|Dw|2dx ≤ 0 (12)

Thus e(t) ≤ e(0) = 0 for 0 ≤ t ≤ T .



A more subtle question would be about uniqueness backward in time for heat equation. In particular, we do not
assume solutions coincide at time t = 0.

Theorem 2.28 (Backward Uniqueness). Let u, ũ ∈ C2(UT ) respectively solve

{
ut −∆u = 0 in UT

u = g on ∂U × [0, T ]

and

{
ũt −∆ũ = 0 in UT

ũ = g on ∂U × [0, T ]
, if we further have u(x, T ) = ũ(x, T ) for x ∈ U , then we obtain u ≡ u

within UT .

In other words, if two temperature distributions on U agree at some time T > 0 and have had the same boundary
values for times 0 ≤ t ≤ T , then these temperatures must have been identically equal within U at all earlier
times.

2.4 Wave Equation

We study wave equation utt −∆u = 0 and the nonhomogeneous wave equation utt −∆u = f subject to initial
and boundary conditions.

2.4.1 Solution by Spherical Means

Solution for n = 1, d’Alembert’s formula We first solve for

{
utt − uxx = 0 in R× (0,∞)

u = g, ut = h on R× {t = 0}
We define

v(x, t) := ( ∂
∂t −

∂
∂x )u(x, t) and solve for transport equation. Our final result turns out to be

u(x, t) =
1

2
[g(x+ t) + g(x− t)] +

1

2

∫ x+t

x−t

h(y)dy (x ∈ R, t ≥ 0)

We further solve the initial/boundary-value problem on half-line R+ = {x > 0}


utt − uxx = 0 in R+ × (0,∞)

u = g, ut = h on R+ × {t = 0}
u = 0 on {x = 0} × (0,∞)

We apply odd extension to u, g, h and convert our problem into solving extended solutions on R, then apply
d’Alembert’s formula and arrive at

u(x, t) =

{
1
2 [g(x+ t) + g(x− t)] + 1

2

∫ x+t

x−t
h(y)dy if 0 ≤ t ≤ x

1
2 [g(x+ t)− g(t− x)] + 1

2

∫ x+t

−x+t
h(y)dy if 0 ≤ x ≤ t

(13)

Now we need tools for solving higher dimension wave equations with n ≥ 2,m ≥ 2 and u ∈ Cm(Rn × [0,∞))

solving

{
utt −∆u = 0 in Rn × (0,∞)

u = g, ut = h on Rn × {t = 0}
We first study average of u over certain spheres taken as functions

of time t and radius r. Our idea lies in applying Euler-Poisson-Darboux equation to convert odd n into ordinary
one-dimension wave equations. We begin with useful notations

Definition 2.29. Let x ∈ Rn, t > 0, r > 0, define U(x; r, t) := 1
nα(n)rn−1

∫
∂B(x,r)

u(y, t)dS(y) as average of u

over sphere ∂B(x, r). Similarily, define G(x; r) = 1
nα(n)rn−1

∫
∂B(x,r)

g(y)dS(y), H(x; r) = 1
nα(n)rn−1

∫
∂B(x,r)

h(y)dS(y)

We discover the Euler-Poisson-Darboux equation in spherical means

Theorem 2.30 (Euler-Poisson-Darboux equation). Fix x ∈ Rn, and let u solve

{
utt −∆u = 0 in Rn × (0,∞)

u = g, ut = h on Rn × {t = 0}
,

then U ∈ Cm(R+ × [0,∞)) and solve

{
Utt − Urr − n−1

r Ur = 0 in R+ × (0,∞)

U = G,Ut = H on R+ × {t = 0}

Solution for n = 3, Kirchhoff’s formula Let u ∈ C2(R3 × [0,∞)) solve

{
utt −∆u = 0 in R3 × (0,∞)

u = g, ut = h on R3 × {t = 0}

then we set Ũ := rU, G̃ := rG, H̃ := rH. We notice that Ũ in fact solves


Ũtt − Ũxx = 0 in R+ × (0,∞)

Ũ = G̃, Ũt = H̃ on R+ × {t = 0}
Ũ = 0 on {r = 0} × (0,∞)



We directly apply solution to reflection method for 0 ≤ r ≤ t, i.e., Ũ(x; r, t) = 1
2 [G̃(r + t) − G̃(t − r)] +

1
2

∫ r+t

−r+t
H̃(y)dy and observe a relation u(x, t) = limr→0+

Ũ(x;r,t)
r = G̃

′
(t) + H̃(t). We finally obtain Kirchhoff’s

formula for solution of initial-value problem in n = 3

u(x, t) =
1

3α(3)t2

∫
∂B(x,t)

th(y) + g(y) +Dg(y) · (y − x)dS(y) (x ∈ R3, t > 0)

Solution for n = 2, Poisson’s formula Let u ∈ C2(R2 × [0,∞)) solve

{
utt −∆u = 0 in R2 × (0,∞)

u = g, ut = h on R2 × {t = 0}
we

solve the problem by regarding it as problem for n = 3 with third spatial variable x3 not appearing. We write
u(x1, x2, x3, t) := u(x1, x2, t), g(x1, x2, x3) := g(x1, x2), h(x1, x2, x3) := h(x1, x2) and directly apply Kirchhoff’s
formula. We obtain u(x, t) = ∂

∂t (
t

4πt2

∫
∂B(x,t)

gdS)+ t
4πt2

∫
∂B(x,t)

hdS. It suffices to simplify the above expressions

by parametrization the surface measures. We eventually arrive at Poisson’s formula

u(x, t) =
1

2α(2)t2

∫
B(x,t)

tg(y) + t2h(y) + tDg(y) · (y − x)

(t2 − |y − x|2) 1
2

dy (x ∈ R2, t > 0)

The idea of solving the problem for n = 3 and then dropping to n = 2 is known as the method of descent.
Solution for odd n We apply similar idea by converting the problem to spherical means with Euler-Poisson-
Darboux equation. The difference would be using more complicated identities for defining Ũ . We give the

explicit expressions as


Ũ(r, t) := (1r

∂
∂r )

k−1(r2k−1U(x; r, t))

G̃(r) := (1r
∂
∂r )

k−1(r2k−1G(x; r))

H̃(r) := ( 1r
∂
∂r )

k−1(r2k−1H(x; r))

for r > 0, t ≥ 0.

We check they satisfy


Ũtt − Ũxx = 0 in R+ × (0,∞)

Ũ = G̃, Ũt = H̃ on R+ × {t = 0}
Ũ = 0 on {r = 0} × (0,∞)

and so by similar method of solving for reflection

method with n = 1, we arrive at representation formula for odd dimensions

u(x, t) =
1

γn
[(
∂

∂t
)(
1

t

∂

∂t
)

n−3
2 (

1

nα(n)t

∫
∂B(x,t)

gdS) + (
1

t

∂

∂t
)

n−3
2 (

1

nα(n)t

∫
∂B(x,t)

hdS)]

(n is odd and γn = (n− 2) · · · 3 · 1)
for x ∈ Rn, t > 0. Notice that in order to compute u(x, t), we only need information on g, h and their derivatives
on ∂B(x, t), but not the entire ball B(x, r). Also, for n > 1, a solution of wave equation may not be as smooth
as its initial value g.
Solution for even n We again apply method of descent, by defining u(x1, · · · , xn+1, t) := u(x1, · · · , xnt),
g(x1, · · · , xn+1) := g(x1, · · · , xn), h(x1, · · · , xn+1) := h(x1, · · · , xn). We plug in solution for odd dimensions

as obtain u(x, t) = 1
γn+1

[( ∂
∂t )(

1
t

∂
∂t )

n−2
2 ( tn−1

(n+1)α(n+1)tn

∫
∂B(x,t)

gdS) + ( 1t
∂
∂t )

n−2
2 ( tn−1

(n+1)α(n+1)tn

∫
∂B(x,t)

hdS)]. We

again simplify by parametrization, and so we obtain the representation formula for even dimensions

u(x, t) =
1

γn
[
∂

∂t
(
1

t

∂

∂t
)

n−2
2 (

1

α(n)

∫
B(x,t)

g(y)

(t2 − |y − x|2) 1
2

dy) + (
1

t

∂

∂t
)

n−2
2 (

1

α(n)

∫
B(x,t)

h(y)

(t2 − |y − x|2) 1
2

dy)]

(n is even and γn = n · (n− 2) · · · 4 · 2)
for x ∈ Rn, t > 0.
We notice that if n is odd and n ≥ 3, data g and h at given point x ∈ Rn affect the solution u only on the
boundary {(y, t)|t > 0, |x − y| = t} of the cone C = {(y, t)|t > 0, |x − y| < t}. On the other hand, if n is even,
then data g and h affect u within all of C. Intuitively, a disturbance originating at x propagates along a sharp
wavefront in odd dimensions, but in even dimensions it continues to have effect even after the leading edge of
the wavefront passes. This is called Huygens’ Principle.

2.4.2 Nonhomogeneous problem

We study the initial-value problem for nonhomogeneous equation

{
utt −∆u = f in Rn × (0,∞)

u = 0, ut = 0 on Rn × {t = 0}
Again, we construct the solution by using Duhamel′sprinciple. We define u(x, t; s) as solution to homogenous

problem

{
utt(; s)−∆u(; s) = 0 in Rn × (0,∞)

u(; s) = 0, ut(; s) = f(, s) on Rn × {t = s}
and set u(x, t) :=

∫ t

0
u(x, t; s)ds for x ∈ Rn, t ≥ 0. We



verify that it is indeed solution.

For general nonhomogeneous problem, we construct u as sum of solution to

{
utt −∆u = 0 in Rn × (0,∞)

u = g, ut = h on Rn × {t = 0}

and solution to

{
utt −∆u = f in Rn × (0,∞)

u = 0, ut = 0 on Rn × {t = 0}
.

2.4.3 Energy Method

We find that wave equation is nicely behaved for all n w.r.t. certain integral energy norms. We first let U ⊂ Rn

be bounded, open set with smooth boundary ∂U , and set UT = U × (0, T ], ΓT = UT − UT for T > 0. We wish

to study uniqueness to initial/boundary-value problem


utt −∆u = f in UT

u = g on ΓT

ut = h on U × {t = 0}

Theorem 2.31 (Uniqueness for Wave Equation). There exists at most one solution u ∈ C2(UT ) to the
initial/boundary-value problem.

Proof. Let ũbeanothersolution, sow := u - ũ solves homogeneous initial/boundary-value problem. We define our
energy E(t) := 1

2

∫
U
w2

t (x, t) + |Dw(x, t)|2dx for 0 ≤ t ≤ T . Then we compute

d

dt
E(t) =

∫
U

wtwtt +Dw ·Dwtdx (14)

=

∫
U

wt(wtt −∆w)dx = 0 (15)

So E(t) = E(0) = 0 for any 0 ≤ t ≤ T , thus w = u− ũ ≡ 0 in UT .

Another illustration of energy method would be examining the domain of dependence for solutions to wave
equation. We let u ∈ C2 solve utt −∆u = 0 in Rn × (0,∞). Fix 0 ∈ Rn, t0 > 0, we define the backward wave
cone with apex(x0, t0) as K(x0, t0) := {(x, t)|0 ≤ t ≤ t0, |x− x0| ≤ t0 − t}.

Theorem 2.32 (Finite Propagation Speed). If u ≡ ut ≡ 0 on B(x0, t0) × {t = 0}, then u ≡ 0 within the cone
K(x0, t0).

The proof is essentially done by defining local energy e(t) := 1
2

∫
B(x0,t0−t)

u2
t (x, t) + |Du(x, t)|2dx for 0 ≤ t ≤ t0

and computing d
dte(t) to observe e(t) ≤ e(0) = 0 for all 0 ≤ t ≤ t0. We see that any disturbance originating

outside B(x0, t0) has no effect on the solution within the cone K(x0, t0), thus the solution has finite propagation
speed.
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