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Introduction

The report serves as pedagogical summary and reflection of the author’s combined interest in Navier-

Stokes PDE Analysis and Probability, covering 3 readings [1], [2], [3], with a main focus on [3] Chapter

1 and 2. The goal is to show the existence of stationary measure for 2D Stochastic Navier-Stokes with

random kick forcing and with regular white-in-time noise via Bogolyubov-Krylov argument. Contents to

be covered includes

1. Stochastics.

• Polish Space. Ulam’s Theorem. Prokhorov’s Theorem. Weak convergence of measures.

• Markov Process. Markov Property. Kolmogorov-Chapman. Markov Semi-groups.

• Bogolyubov-Krylov argument.

2. Navier-Stokes Equation.

• Deterministic case: Leray-Projection. Existence and Uniqueness of Solutions (A priori es-

timate, energy balance). Navier-Stokes Process, the dissipativity property and continuity

property.

• Random Kick Force: Definiton of solution as Markov Chain. Second Moment Estimate.

• White Noise: Definiton of Solution as Markov Process (using Itô Formula and Doob’s Moment

Inequality). Energy Balance and Second Moment Estimate. Second Exponential Moment

Estimate.

3. Proof of Existence of Stationary Measure for Navier-Stokes Equations with Random Kick Force

and with White Noise.

2



1 Stochastics

In this section, we define the mathematical object: Markov Process (ut, Pv), taking values in a Polish

space X, which later shall be used as function space to solutions of deterministic Navier-Stokes equations.

Then we introduce Bogolyubov-Krylov argument to construct stationary measure using the family of

measures generated by Markov-Semi-groups that is ‘tight’.

1.1 Polish Space

Definition 1.1. X is Polish space if it is complete, separable metric space. Let T be topology on X

induced by its metric, then (X,B(X)) is measurable Polish space for Borel σ-algebra B(X) := σ (T )

Now we study the set of probability measures P(X) defined on (X,B(X)). There is beautiful interplay

between topology and measure theory.

Theorem 1.1 (Ulam [4]). ∀ µ ∈ P(X), ∀ ϵ > 0, ∃ K ⊂ X s.t. µ (K) ≥ 1 − ϵ. In other words, any

probability measure on (X,B(X)) is regular.

Proof. Since X is separable, we take {xn}n≥1 as countable dense subset of X, and because µ(X) = 1,

∀ ϵ > 0 and ∀ m ∈ N, ∃ N = N(m) ∈ N s.t.

µ

(
X −

N⋃
n=1

B

(
xn,

1

m

))
<

ϵ

2m
=⇒ µ (X −K) ≤ ϵ (1.1)

for K =
⋂

m≥1

⋃N
n=1 B

(
xn,

1
m

)
. Recall for metric space X, a subset is compact if and only if it is

complete and totally bounded. K satisfies completeness as closed subset of complete space X. For

totally boundedness, ∀ δ > 0, ∃ m > 1
δ
so K ⊂

⋃N
n=1B (xn, δ). Hence K is compact subset depending

on ϵ.

One may further ask: given a family of measures {µα} ⊂ P(X), will there be one compact K that

holds uniformly for all µα? In general, the answer is false. Yet as long as such compact K exists, known

as ‘tightness’, we have relative compactness of {µα} in the weak topology of P(X).

Definition 1.2. Let Cb(X) := {f : X → R | f continous and bounded} with norm ∥f∥∞ := supu∈X |f(u)|.

Then {µk} ⊂ P(X) converges weakly to µ ∈ P(X) if ∀ f ∈ Cb(X), we have
∫
fdµk →

∫
fdµ as k → ∞.
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Lemma 1.1 (Portmanteau theorem [4]). µk → µ weakly in P(X) if and only if either one is satisfied:

lim inf
k→∞

µk(G) ≥ µ(G) ∀ G open ⊂ X (1.2)

lim sup
k→∞

µk(F ) ≤ µ(F ) ∀ F closed ⊂ X (1.3)

Definition 1.3 (tightness). Family {µα} ⊂ P(X) is tight if ∀ ϵ > 0, ∃ K ⊂ X s.t. µα (K) ≥ 1− ϵ ∀ α.

Theorem 1.2 (Prokhorov [5]). A family {µα} ⊂ P(X) is tight if and only if {µα} is relatively compact

in the weak topology, i.e., ∀ sequence {µk} ⊂ {µα}, ∃ subsequence {µki} that converges weakly in {µα}.

Sketch of Proof. Relative compactness =⇒ tightness. Take {xn} countable dense subset of X, then

∀ m ∈ N , {B
(
xn,

1
m

)
}n forms open cover of X. We claim that ∃ N = N(m) ∈ N s.t.

µα

(
X −

N⋃
n=1

B

(
xn,

1

m

))
<

ϵ

2m
∀ α

Assume false, then ∀ k ∈ N, we pick µk ∈ {µα} s.t. µk

(⋃k
n=1B

(
xn,

1
m

))
≤ 1 − ϵ

2m
by diagonalization

argument. Now {µk} has weakly convergent subsequence {µkj} with limit µ ∈ {µα} ⊂ P(X). Note ∀ N ,⋃N
n=1B

(
xn,

1
m

)
is open, so by Portmanteau theorem (1.2) we have

µ(
N⋃

n=1

B

(
xn,

1

m

)
) ≤ lim inf

j→∞
µkj(

N⋃
n=1

B

(
xn,

1

m

)
)

≤ lim inf
j→∞

µkj(

kj⋃
n=1

B

(
xn,

1

m

)
) ≤ 1− ϵ

2m

Reach contradiction by taking N → ∞ and µ(X) = 1. The rest follows from (1.1).

Tightness =⇒ Relative Compactness. The reverse direction is quite technical and heavy. So for

simplicity, we restrict ourselves to the case that X is compact and show P(X) is compact as well. Notice

for X compact, Cb(X) = C(X). Denote C∗(X) as Banach Dual space of C(X), and consider a closed

subspace Φ := {φ ∈ C∗(X) | ∥φ∥ ≤ 1, φ(I) = 1, φ(f) ≥ 0 ∀ f ∈ C(X) with f ≥ 0}. According to Riesz-

Representation, the map µ ∈ P(X) → φµ ∈ Φ with φµ(f) =
∫
fdµ is bijection and homeomorphism w.r.t.

weak topology 1.2 on P(X) and weak∗ topology on Φ. Now using Banach-Alaoglu, the closed unit ball

{φ ∈ C∗(X) | ∥φ∥ ≤ 1} is compact in weak∗ topology, hence Φ as its closed subset is also compact. Since

homeomorphism preserves compactness, P(X) is compact. Hence any family of probability measures is
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automatically relative compact. Now for general case where X is not compact, we cite [5] the topology

compactification fact that: For X separable metric space, there ∃ compact metric space Y and map

T : X → Y s.t. T is homeomorphism from X onto T (X). To prove {µα} is relatively compact, we take

sequence {µk} and define push-forward measures {νk} for compactification of X

νk (B) := µk

(
T−1 (B)

)
∀ B ∈ B(Y )

Since Y compact, P(Y ) compact, so ∃ ν ∈ P(Y ) as weak limit of subsequence {νkj} in P(Y ). Now we

use tightness of µα to show concentration of ν on a large subset of T (X) ⊂ Y . ∀ m ∈ N, take Km ⊂ X

compact s.t. µα(Km) ≥ 1 − 1
m

∀ α. Since T (Km) is compact subset of T (X), hence closed, again by

Portmanteau theorem (1.3) we have

ν(T (Km)) ≥ lim sup
j→∞

νkj(T (Km))

≥ lim sup
j→∞

µkj(Km) ≥ 1− 1

m

Define E :=
⋃

m≥1 T (Km), so E ∈ B(Y ) and ν (E) = 1. Now we define

µ(A) := ν(T (A) ∩ E) ∀ A ∈ B(X)

By requirement ν(E) = 1, we have µ ∈ P(X). Finally, we show {µk} has weak convergent subsequence

{µkj} to µ. Take any closed C ⊂ X, there ∃ F closed ⊂ Y s.t. F ∩ T (X) = T (C), i.e., C = T−1(F ).

Notice hence E ∩ F = E ∩ T (C). So

lim sup
j→∞

µkj(C) = lim sup
j→∞

νkj(F )

≤ ν(F ) = ν(F ∩ E) = ν(T (C) ∩ E) = µ(C)

Hence by Portmanteau theorem (1.3), µkj converges weakly to µ.
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1.2 Markov Process

A Markov Process (ut,Pv) is set of X-valued random processes and family of probability measures

satisfying the Markov Property. We construct from the basics [3]. Let time be T+ = Z+ or R+.

Definition 1.4 (Markov Process). Fix measurable space (Ω,F) and measurable Polish space (X,B(X)).

• Define on (Ω,F) a filtration {Ft, t ∈ T+}, non-decreasing family of sub σ-algebras Ft ⊂ F in T+.

• Define on (Ω,F) a family of probability measures {Pv, v ∈ X} as parametrized by X Polish space.

We also let mapping v 7→ Pv (A) be universally measurable for any A ∈ F , meaning ∀ a ∈ R, {v ∈

X | Pv (A) > a} belongs to the completion of B (X) w.r.t. any probability measure on (X,B (X)).

• Define from (Ω,F ,Ft, {Pv}) to (X,B(X)) an X-valued random process {ut, t ∈ T+} adapted to the

filtration Ft, i.e., ut is Ft-measurable ∀ t ∈ T+. We require {ut} to satisfy the Markov Property

∀ v ∈ X, Γ ∈ B(X) and s, t ∈ T+.

Pv{u0 = v} = 1 (1.4)

Pv{ut+s ∈ Γ | Fs} = Pt (us, Γ) for Pv − almost every ω ∈ Ω (1.5)

where Pt is transition function of (ut,Pv) defined as law of ut under probability measure Pv

Pt (v,Γ) := Pv{ut ∈ Γ}, v ∈ X, Γ ∈ B (X) (1.6)

The collection of above objects is a Markov Process, denoted by (ut,Pv). If T+ = Z+, it is Markov Chain.

We have Kolmogorov-Chapman implying Markov Process generates an evolution in the space of

probability measures.

Lemma 1.2 (Kolmogorov-Chapman relation [3]). ∀ t, s ∈ T+, v ∈ X, and Γ ∈ B (X), the transition

function Pt satisfies the relation

Pt+s (v,Γ) =

∫
X

Pt (v, dz)Ps (z,Γ) (1.7)

Proof. By Towering Property, and then Markov Property,
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Pt+s (v,Γ) = Pv (ut+s ∈ Γ) = Ev{IΓ (ut+s)} = Ev{Ev{IΓ (ut+s) | Ft}} = Ev{Pv{ut+s ∈ Γ | Ft}}

= Ev{Put{us ∈ Γ}} = Ev{Ps (ut,Γ)} =

∫
Ω

Ps (ut,Γ) dPv =

∫
X

Ps (z,Γ) ut∗ (Pv) (dz)

where ut∗ (Pv) is image of Pv under ut. But notice ∀ Γ ∈ B (X) , ut∗ (Pv) (Γ) = Pv{ut ∈ Γ} = Pt (v,Γ),

hence Pt+s (v,Γ) =
∫
X
Ps (z,Γ)Pt (v, dz)

Now we introduce two linear operators associated to a given Markov Process (ut,Pv), known as the

Markov semigroups. They give rise to the notion of a ‘stationary measure’ for the Markov Process.

Definition 1.5 (Markov Semigroups). For each Markov Process (ut,Pv), there correspond two families of

linear operators acting in L∞ (X), space of bounded measurable functions, and P (X), space of probability

measures. These families of linear operators are Markov Semigroups and defined in terms of transition

functions ∀ t ∈ T+

Bt : L
∞ (X) → L∞ (X) Btf(v) :=

∫
X

Pt (v, dz) f(z) ∀ v ∈ X

B∗
t : P (X) → P (X) B∗

tµ (Γ) :=

∫
X

Pt (v,Γ)µ (dv) ∀ Γ ∈ B (X)

Property 1.1. (i) Bt indeed forms a semigroup, i.e., B0 = Id and Bt+s = Bs ◦Bt. Same for B∗
t .

Proof. Note by Markov Property Pv{u0 = v} = 1, so

B0f(v) =

∫
X

Pv{u0 ∈ dz}f(z) = f(v), B∗
0µ (Γ) =

∫
X

Pv{u0 ∈ Γ}µ (dv) = µ (Γ)

Then by Kolmogorov-Chapman relation and Fubini, we have

Bt+sf(v) =

∫
X

Pt+s (v, dz) f(z) =

∫
X

∫
X

Ps (v, dy)Pt (y, dz) f(z) =

∫
X

(∫
X

Pt (y, dz) f(z)

)
Ps (v, dy)

=

∫
X

Ps (v, dy)Btf(y) = Bs (Btf(v))

B∗
t+sµ (Γ) =

∫∫
X×X

Pt (v, dz)Ps (z,Γ)µ (dv) =

∫
X

(∫
X

Pt (v, dz)µ (dv)

)
Ps (z,Γ)

=

∫
X

B∗
tµ (dz)Ps (z,Γ) = B∗

s ◦B∗
tµ (Γ)
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(ii) Bt and B∗
t satisfy the duality relation

(Btf, µ) = (f,B∗
tµ) ∀ f ∈ L∞ (X) , µ ∈ P (X) (1.8)

Proof. By Fubini

(Btf, µ) =

∫
X

(∫
X

Pt (v, dz) f(z)

)
dµ (v) =

∫
X

f(z)

∫
X

Pt (v, dz)µ (dv) = (f,B∗
tµ)

(iii) For λ ∈ P (X), define its associated probability measure with (ut,Pv) on (Ω,F) as

Pλ(Γ) :=

∫
X

Pv(Γ)λ(dv) Γ ∈ F (1.9)

then the Pλ-law of ut coincides with B∗
tλ, i.e. ∀ t ∈ T+,

Pλ{ut ∈ Γ} ≡ ut∗ (Pλ) (Γ) = B∗
tλ (Γ) ∀ Γ ∈ B(X) (1.10)

Proof.

Pλ{ut ∈ Γ} =

∫
X

Pv (ut ∈ Γ)λ (dv) =

∫
X

Pt (v,Γ)λ (dv) = B∗
tλ (Γ)

(iv) For the above λ ∈ P (X) and Pλ, define Eλ as associated mean value with probability measure Pλ.

Then if f ∈ L∞ (X), we have Eλf (ut) =
∫
X
Btf(v)λ (dv) for any t ∈ T+.

Proof. By duality relation

Eλf (ut) =

∫
Ω

f(ut)dPλ =

∫
Ω

f(v)ut∗(Pλ)(dv) =

∫
X

f(v)B∗
tλ (dv) =

∫
X

Btf(v)λ (dv)
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Now we’re able to define stationary measure making use of (1.10).

Definition 1.6 (Stationary Measure). µ ∈ P (X) is stationary for (ut,Pv) if B∗
tµ = µ ∀ t ∈ T+. In

other words, the image of Pµ under ut coincides with µ, ∀ t ∈ T+.

In the following, we give an example of Markov Process suitable in our setting, and make sense of the

notion ‘stationary solution’ for an equation.

Example 1.1. Fix first a complete probability space (Ω,F ,P) and a measurable space (H,B(H)) for H

separable Banach space (norm induces metric, hence Polish). We define ηk : Ω → H as sequence of i.i.d.

H-valued random variables for k ≥ 1 and equip (Ω,F) with the natural filtration Fk := σ (η1, · · · , ηk)

∀ k ≥ 1, letting F0 = {∅,Ω}. Let S : H → H be a continuous mapping. Now pick v ∈ H, and define a

sequence of H-valued random variables vk : Ω → H for k ≥ 0 by

v0 = v, vk = S(vk−1) + ηk ∀ k ≥ 1 (1.11)

The collection (vk,P) itself is a Markov Chain.

Moreover, we can define (Ω̃, F̃) as product of measurable spaces (H,B (H)) and (Ω,F), i.e., Ω̃ = H ×Ω,

and F̃ = B (H)⊗F . Equip it with filtration {F̃k, k ≥ 0} where F̃k = B (H)⊗Fk. Impose on (Ω̃, F̃ , F̃k)

a family of probability measures Pv := δv ⊗ P, where δv is dirac measure for each given v ∈ H. Given

{vk}k≥0 from (1.11), we define a sequence of H-valued random variables uk : Ω̃ → H for k ≥ 0 s.t.

uω̃
k := vωk ∀ ω̃ = (v, ω) ∈ Ω̃

If denote Pk(v,Γ) ≡ P{vk ∈ Γ} ∀ Γ ∈ B(H) the law of vk for k ≥ 0 with fixed v ∈ H, the collection

(uk,Pv) defines a Markov Chain with transition function Pt.

Now we add randomness to initial data v ∈ H, letting v be H-valued random variable independent of

{ηk} with law µ, i.e., v∗(P) ≡ µ ∈ P(H). Then from (1.10), uk∗(δv ⊗ Pµ) ≡ uk∗(Pµ) = vk∗(Pµ) = B∗
kµ

for k ≥ 0. If we have µ as stationary measure for Markov Process (uk,Pv), then B∗
kµ = µ for all k,

hence uk∗(Pµ) = v∗(P) for all k. In this case, µ is called stationary measure for (1.11), and the sequence

{vk}k≥0 is stationary solution. Notice uk∗(Pµ) is well-defined because uk is only defined on {v} ×Ω, and

with dirac-delta at v, by definition of product measure δv ⊗ Pµ{uk ∈ Γ} = 1 · Pµ{uk ∈ Γ} = Pµ{vk ∈ Γ}.

We shall see eventually S is our solution operator, and {vk} defines family of solutions to our stochastic
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Navier-Stokes system of interest. So the purpose is to find µ as law of initial data which defines a

stationary measure for (uk,Pv), hence the stationary solutions {vk}.

1.3 Bogolyubov-Krylov

This is method to construct stationary distributions for Markov Processes that satisfy weak compactness

condition [3]. Before proceeding, we make 2 assumptions on the Markov Processes we deal with.

Feller Property ∀ f ∈ Cb (X) and t ∈ T+, we have Btf ∈ Cb (X) (1.12)

Time Continuity Trajectories ut (ω) with ω ∈ Ω are continuous in time if t ∈ T+ = R+ (1.13)

Theorem 1.3 (Bogolyubov-Krylov [3]). Let (Ω,F ,Ft) be measurable space with filtration, (X,B(X))

be measurable Polish space, and (ut,Pv) be family of X-valued Markov Processes on (Ω,F) adapted to

Ft. Let Pt be the transition function and Bt, B
∗
t the associated Markov semi-groups. Let (ut,Pv) satisfy

(1.12) and (1.13). Now fix λ ∈ P(X) and define family of measures λt for t ∈ T+ by

λt(Γ) :=
1

t

∫ t

0

(B∗
sλ)(Γ)ds =

1

t

∫ t

0

∫
X

Ps(u,Γ)λ(du)ds Γ ∈ B(X) (1.14)

and integral be replaced by sum over s = 0, . . . , t − 1 if T+ = Z+. Then if in addition, λ ∈ P(X) is

measure for which {λt, t ∈ T+} is tight, our Markov Process (ut,Pv) has at least one stationary measure.

Proof. We use Prokhorov Theorem (1.2). There ∃ {tn} ⊂ T+ increasing to ∞ so that {λt} converges

weakly to some µ ∈ P(X), i.e.,

(f, λtn) → (f, µ) as n → ∞ ∀ f ∈ Cb(X) (1.15)
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We hope to show that µ is stationary measure for (ut,Pv). Indeed ∀ f ∈ Cb(X) and r ∈ T+

(f,B∗
rµ)

(1.8)
= (Brf, µ)

(1.15) and Feller (1.12)
= lim

n→∞
(Brf, λtn)

= lim
n→∞

1

tn

∫ tn

0

(Brf,B
∗
sλ)ds

semigroup (1.1)
= lim

n→∞

1

tn

∫ tn

0

(f,B∗
s+rλ)ds

= lim
n→∞

1

tn

∫ r+tn

r

(f,B∗
sλ)ds = lim

n→∞

1

tn

(∫ r+tn

0

(f,B∗
sλ)ds−

∫ r

0

(f,B∗
sλ)ds

)
= lim

n→∞

1

tn

(∫ tn

0

(f,B∗
sλ)ds+

∫ r+tn

tn

(f,B∗
sλ)ds−

∫ r

0

(f,B∗
sλ)ds

)
= lim

n→∞

1

tn

∫ tn

0

(f,B∗
sλ)ds

(1.15)
= (f, µ)

The above holds for any f ∈ Cb(X) and r ∈ T+, hence µ is stationary measure for (ut,Pv).

Corollary 1.1. Let (ut,Pv) satisfy same conditions as Theorem 1.3. Suppose ∃ initial data v ∈ X, an

increasing sequence of compact subsets Km ⊂ X and finite times tm ∈ T+ such that

sup
t≥tm

Pv{ut /∈ Km} → 0 as m → ∞ (1.16)

Then ∃ λ ∈ P(X) s.t. λt as defined by (1.14) is tight, so conditions for Theorem 1.3 is satisfied.

Proof. Define λ := δv, so that λt =
1
t

∫ t

0

∫
X
Ps(u, ·)δv(du)ds = 1

t

∫ t

0
Ps(v, ·)ds. Now by (1.16), ∀ ϵ > 0,

there exists m ≥ 1 s.t.

sup
t≥tm

Pv{ut /∈ Km} = 1− inf
t≥tm

Pt(v,Km) ≤
ϵ

2
=⇒ Pt(v,Km) ≥ 1− ϵ

2
∀ t ≥ tm (1.17)

To deal with
∫ tm
0

Ps(v, ·)ds, one observe that [0, tm] is compact in R+ w.r.t. standard topology, hence

its image under the continuous mapping s 7→ Ps(v, ·), as guaranteed by (1.13), remains compact in its

codomain, which is P(X) equipped with the weak topology. Apply Prokhorov Theorem 1.2 so that

{Ps(v, ·)}0≤s≤tm is tight, hence there exists K0 ⊂ X such that

Ps(v,K0) ≥ 1− ϵ

2
∀ 0 ≤ s ≤ tm (1.18)

Define K = K0 ∪Km and using (1.17), (1.18), we see for fixed ϵ > 0, λt(K) ≥ 1− ϵ ∀ t ∈ T+, tightness.
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2 Navier-Stokes Equation

In this section, we introduce the 2D Navier-Stokes Equation on T2 = R2/2πZ2 under Leray Decomposi-

tion, using the weak solution formulation. Then we introduce the language of Navier-Stoke Process and

its dissipativity property that adapts to the Stochastic settings. With these preparations, we consider 2

cases of Stochastic Navier-Stokes: perturbation with random kick force and with white noise. For each

case, we introduce the definitions of solutions under the Markov Process perspective, then prove certain

moment estimates using Itô’s Fomula and Doob’s Moment Inequality.

2.1 Deterministic Case

Consider Incompressible 2D-Navier Stokes Equations

u̇+ ⟨u,∇⟩u− ν∆u+∇p = f (t, x) (2.1)

div u = 0 (2.2)

• u = (u1, u2) unknown velocity field, p pressure, ν > 0 kinematic viscosity, f density of external

force, ⟨u,∇⟩ = u1∂1 + u2∂2 differential operator and div u = ∂1u
1 + ∂2u

2 the divergence of velocity.

• We consider problem on T2 = R2/2πZ2, meaning x = (x1, x2) ∈ R2 and functions u, f, p are

2π-periodic w.r.t. xi, i = 1, 2.

2.1.1 Leray Projection and Solution

Due to low regularity phenomenon observed in turbulence, we consider weak solutions to (2.1) (2.2)

defined in distribution. To do so, we need Sobolev Space and make sense of the equation (2.1).

Definition 2.1 (Hm and Ḣm). Heuristically, let Hm be Sobolev Space whose ‘m’th order weak derivative

lies in L2. We may generalize to m ∈ R if notice the Fourier Series expansion for L2 functions on T2

u(x) =
∑
s∈Z2

û(s)ei⟨s,x⟩ ∈ L2
(
T2; R2

)
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Hm ≡ Hm (T2;R2) is hence defined as closure of C∞ (T2;R2) w.r.t. the norm

∥u∥Hm ≡ ∥u∥Hm(T2;R2) :=

(∑
s∈Z2

(
1 + |s|2

)m |û(s)|2
) 1

2

(2.3)

We also introduce Ḣm as subspace of Hm with zero-mean functions

Ḣm ≡ Ḣm
(
T2;R2

)
:= {u ∈ Hm

(
T2;R2

)
| ⟨u⟩ := 1

(2π)2

∫
T2

u(x)dx = 0}

with an equivalent norm as (2.3)

∥u∥Ḣm :=

(∑
s ̸=0

|s|2m|û(s)|2
) 1

2

We list 2 important ingredients for Sobolev space Hm with m ∈ R on T2: duality and Interpolation.

Proposition 2.1 (Duality Pairing). Hm and H−m are dual w.r.t. L2-scalar product ⟨·, ·⟩

∥u∥Hm = sup
v∈C∞(T2;R2)
∥v∥H−m≤1

|⟨u, v⟩| ∀ u ∈ C∞ (Td;Rn
)

(2.4)

Proposition 2.2 (Hm Interpolation). ∀ a < b ∈ R, 0 ≤ θ ≤ 1 constant, then ∀ u ∈ Hb

∥u∥H(θa+(1−θ)b) ≤ ∥u∥θHa ∥u∥1−θ
Hb (2.5)

Instead of working with NS system (2.1), (2.2), we think about formulating a new equation, where

the pressure term is killed. In particular, we consider a function space where pressure term lies in

Definition 2.2 (∇Hm+1).

∇Hm+1 :=
{
u ∈ Hm

(
T2;R2

)
| u = ∇p for some p ∈ Hm+1

}
Note if u = ∇p ∈ ∇Hm+1 with p ∈ Hm+1, we have ∥u∥Hm = ∥∇p∥Hm = ∥p∥Ḣm+1. But Ḣm+1 is closed

subspace of Hm+1, so ∇Hm+1 is closed subspace of Hm as well.

We design a projection Π from Hm to the complement of ∇Hm+1, and then apply Π to our equation
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(2.1). This is valid due to Leray’s Decomposition of Hm into sum of Hm
σ and ∇Hm+1, see [1].

Definition 2.3 (Hm
σ ).

Hm
σ :=

{
u ∈ Hm

(
T2;R2

)
| div u = 0 on T2

}
with div in sense of distribution. We see Hm

σ is closed subspace of Hm due to continuity of div . Moreover,

Hm
σ coincides with closure of {u ∈ C∞ (T2;R2) | div u = 0 on T2} w.r.t. norm ∥u∥Hm in (2.3).

Theorem 2.1 (Leray Decomposition [3]). ∀ m ∈ R, Hm admits direct-sum decomposition

Hm
(
T2;R2

)
= Hm

σ ⊕∇Hm+1 (2.6)

Proof. First note 0 ∈ Hm
σ ∩∇Hm+1. For any function u ∈ Hm = Hm (T2;R2), we first expand

u (x) =
∑
s∈Z2

û(s)ei⟨s,x⟩ for û =
(
û1, û2

)
∈ C2

and observe for s = (s1, s2) and s⊥ = (−s2, s1) we have

1

|s|2
(
⟨û(s), s⊥⟩s⊥ + ⟨û(s), s⟩s

)
=

1

|s|2
(
s22û

1 + s21û
1, s21û

2 + s22û
2
)
= û(s)

Hence

u (x) =
∑
s∈Z2

1

|s|2
⟨û(s), s⊥⟩s⊥ei⟨s,x⟩ +

∑
s∈Z2

1

|s|2
⟨û(s), s⟩s ei⟨s,x⟩

where the first term belongs to Hm
σ because for each s ∈ Z2 and div = divx

div

(
⟨û(s), s⊥⟩s⊥

|s|2
ei⟨s,x⟩

)
= div

 1

|s|2

 s22û
1 − s1s2û

2

−s1s2û
1 + s21û

2

 ei⟨s,x⟩


=

ie⟨s,x⟩

|s|2
{
s1
(
s22û

1 − s1s2û
2
)
+ s2

(
−s1s2û

1 + s21û
2
)}

= 0

and the second term is gradient of the function

p (x) = −i
∑
s∈Z2

⟨û(s), s⟩
|s|2

ei⟨s,x⟩

thus belongs to ∇Hm+1.
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Hence we define the Leray Projection Π

Definition 2.4 (Leray Projection). Π : Hm (T2;R2) → Hm
σ is Leray Projection defined by

u 7→ Πu :=
∑
s∈Z2

1

|s|2
⟨û(s), s⊥⟩s⊥ei⟨s,x⟩

where Πu depends only on u but not m.

Now we’re ready to define weak solutions to 2D Navier-Stokes Equations on T2. Let T > 0, function

f ∈ L2 (0, T ;H−1), u0 ∈ L2
σ (T2;R2). We define the space H as solution space (see [6]).

Definition 2.5 (H).

H :=
{
u ∈ L2

(
0, T ;H1

σ

)
| u̇ ∈ L2

(
0, T ;H−1

σ

)}
(2.7)

endowed with norm ∥·∥H where u̇ is understood in the sense of distributions. Note H is Hilbert Space.

∥u∥H :=

(∫ T

0

(
∥u (t)∥2H1 + ∥u̇ (t)∥2H−1

)
dt

) 1
2

and denote D′ as space of R2-valued distributions on (0, T )× T2.

Definition 2.6 (Solution). A pair of functions (u, p) is called a solution to (2.1) (2.2) if u ∈ H,

p ∈ L2 (0, T ;L2) and the equation (2.1) holds in D′. If initial condition

u (0, x) = u0 (x) (2.8)

is also satisfied, then (u, p) is called solution to Cauchy problem (2.1) (2.2) (2.8).

Note that (2.1) (2.2) is not a system of evolution equations since time derivative of unknown function

p is not included. Then our design to exclude pressure from the problem and obtain a nonlocal nonlinear

PDE regarded as evolution equation in a Hilbert Space by using Π is of physical significance [3]. Formally

apply Leray Projection Π to (2.1) which holds in D′. Now by Leray Decomposition (2.6) with m = −1,

we notice that Π (∇p) = 0 as ∇p ∈ ∇L2 ≡ ∇H0. So the pressure term is killed under projection. Also

note Πu̇ = u̇. So using

Lu := −Π∆u and B (u, v) := Π (⟨u,∇⟩v) (2.9)
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and abbreviating B (u) = B (u, u) we have

u̇+ νLu+B (u) = Πf (t) (2.10)

We of course have definition of solution to (2.10).

Definition 2.7 (Solution under Π). u ∈ H is solution of (2.10) on (0, T ) × T2 if the equation (2.10)

holds in D′. If initial condition (2.8) is also satisfied, u is called solution to Cauchy problem (2.10) (2.8).

Note functions ∆u and ⟨u, ∇⟩u are elements of L2 (0, T ;H−1) and thus their Leray Projections belong

to L2 (0, T ;H−1
σ ). So all terms in (2.10) makes sense in D′. We briefly argue the equivalence of solutions.

Theorem 2.2 (Equivalence of Solutions). Let (u, p) ∈ H×L2 (0, T ;L2) be solution in Definition 2.6 on

(0, T )× T2. Then u ∈ H is a solution in Definition 2.7. On the other hand, if u ∈ H is solution in 2.7,

then ∃ p ∈ L2 (0, T ;L2) s.t. (u, p) is solution in 2.6.

Proof. =⇒ . Let (u, p) ∈ H × L2 (0, T ;L2) be solution in 2.6. We integrate w.r.t. time

u (t) = u0 +

∫ t

0

(ν∆u− ⟨u,∇⟩u−∇p+ f) ds, 0 ≤ t ≤ T

with equality holds inH−1. Apply Leray Projection Π, which is continuous inH−1, and using Π commutes

with integration in time

u (t) = u0 +

∫ t

0

(−νLu−B (u) + Πf) ds, 0 ≤ t ≤ T =⇒ 2.7 holds in D′

⇐= . Let u ∈ H be solution in 2.7, then u̇ ∈ L2 (0, T ;H−1
σ ). Consider

∇p (t) = g (t) := −u̇+ ν∆u− ⟨u,∇⟩u+ f

with g ∈ L2 (0, T ;H−1). It suffices to show also g (t) ∈ ∇L2 := {g (t) ∈ H−1 | g = ∇p for some p ∈ L2}

for a.e. t ∈ [0, T ], then we can find solution p ∈ L2 (0, T ;L2). To show g (t) ∈ ∇L2, note

u (t) = u0+

∫ t

0

(−νLu−B (u) + Πf) ds, 0 ≤ t ≤ T =⇒ Π

(∫ t

0

g (s) ds

)
=

∫ t

0

Πg (s) ds = 0 for 0 ≤ t ≤ T

So Πg (t) = 0 a.e. t. Hence g (t) ∈ ∇L2 a.e. t ∈ [0, T ] by Leray Decomposition H−1 = H−1
σ ⊕∇L2.
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We cite without proving the Uniqueness and Existence of Solution Theorem to Cauchy Problem

(2.10), (2.8).

Theorem 2.3 (Existence and Uniqueness [3]). For any u0 ∈ L2
σ and f ∈ L2 (0, T ;H−1), we have unique

solution u ∈ H to Cauchy Problem (2.10), (2.8) satisfying

∥u (t)∥2L2 + ν

∫ t

0

∥∇u (s)∥2L2 ds ≤ ∥u0∥2L2 + ν−1

∫ t

0

∥f (s)∥2H−1 ds 0 ≤ t ≤ T (2.11)

The main tools in a priori estimates are multiplying by u on both sides and integrating in space

1

2

d

dt
∥u(t)∥2L2 =

∫
T2

u(t) ˙u(t) dx =

∫
T2

u(t) (−νLu−B (u) + Πf (t)) dx

≤ −ν ∥∇u(t)∥2L2 +

∫
T2

u(t) f(t) dx ≤ −ν ∥∇u(t)∥2L2 + ∥∇u(t)∥L2 ∥f(t)∥H−1

≤ −ν

2
∥∇u(t)∥2L2 +

1

2ν
∥f(t)∥2H−1

where we used Duality Pairing (2.4) and Young’s Inequality. Integrating in time gives (2.11) and that

u ∈ L2 (0, T ;H1). To see u̇ ∈ L2 (0, T ;H−1), it suffices to note by Sobolev Embedding H1/2 ↪→ L4

|⟨B (u, v) , w⟩| = |⟨B (u,w) , v⟩| =

∣∣∣∣∣
2∑

j,l=1

∫
T2

uj
(
∂jw

l
)
vldx

∣∣∣∣∣ ≤ C1

∫
T2

|u| |∇w| |v| dx

≤ C2 ∥∇w∥L2 ∥u v∥L2 ≤ C2 ∥∇w∥L2 ∥u∥L4 ∥v∥L4 ≤ C3 ∥w∥H1 ∥u∥
H

1
2
∥v∥

H
1
2

By Duality Pairing (2.4)

∥B (u, v)∥H−1 = sup
∥w∥H1≤1

|⟨B (u, v) , w⟩|
∥w∥H1

≤ C ∥u∥
H

1
2
∥v∥

H
1
2

So in our case, take u = v = w to obtain by Sobolev Interpolation (2.5)

∥B(u)∥H−1 ≤ C ∥u∥2
H

1
2
≤ C ∥u∥L2 ∥u∥H1

The right hand side is bounded, hence writing u̇ = Πf(t) − B(u) − νLu ∈ L2(0, T ;H−1) gives u ∈ H.

Note this is a sketch in a priori estimate, where the original method to construct the solution includes

Galerkin Approximation and conclude using Banach-Alaoglu.
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2.1.2 Navier-Stokes Process

In settings of Stochastic Navier-Stokes, we impose zero-mean conditions to external force and expect to

obtain zero mean solution in time. Hence we introduce a new set of function spaces.

Definition 2.8 (H, V , V k, V ∗). We begin by defining mean value of function u ∈ Hm as

⟨u ⟩ := 1

(2π)2

∫
T2

u(x) dx ∀ m ∈ Z≥0

If m ∈ R, define ⟨u ⟩ := û (0) as zero order coefficient in Fourier Expansion. Let u (t, x) solve (2.10),

then integrating in time and taking mean value of both sides gives

⟨u (t)⟩+
∫ t

0

⟨−∆u+B (u)⟩ds = ⟨u (0)⟩+
∫ t

0

⟨f (s)⟩ds

Note
∫ t

0
⟨−∆u+B (u)⟩ds = 0, so if ⟨f (t)⟩ = 0 a.e. t ∈ [0, T ], we have ⟨u (t)⟩ constant. So if both ⟨f (t)⟩

and u0 vanish, we achieve ⟨u (t)⟩ = 0 ∀ t ∈ [0, T ]. Now we introduce function spaces

• H := {u ∈ L2
σ (T2,R2) | ⟨u ⟩ = 0}, V := H1 ∩H and V k := Hk ∩H. By Poincaré’s, Sobolev norm

on V k is equivalent to ⟨Lku, u ⟩ 1
2 . We denote the norms ∥·∥k abusing notation.

• Let V ∗ be dual space of V w.r.t. scalar product in L2.

We introduce a setting suitable for defining solutions to random kick forces, known as the Navier-

Stokes Process. Consider (2.10) with f ∈ L2
loc (R+, H

−1) and ν = 1 so (2.10) writes

u̇+ Lu+B (u) = Πf (t) (2.12)

By Theorem 2.3 ∀ τ ∈ R+, and any u0 ∈ H, (2.10) has unique solution in C (Rτ , H) ∩ L2
loc (Rτ , V ) s.t.

u (τ) = u0, Rτ = [τ,∞). This follows from that fact that H continuously embedds into C(0, T ;L2
σ).

Definition 2.9 (Navier-Stokes Process). Define resolving operator St,τ : H → H by

St,τ (u0) := u (t) (2.13)
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We see the family {St,τ , t ≥ τ ≥ 0} forms a process s.t.

Sτ,τ = IdH , St,τ = St,s ◦ Ss,τ for t ≥ s ≥ τ ≥ 0 (2.14)

We call St,τ the Navier-Stokes Process, or NS Process. Let St = St,0.

Proposition 2.3 (Dissipativity Property of NS Process). Let u0 ∈ H and f ∈ L2
loc (R+, H

−1). Then

∥St (u0)∥2L2(T2) ≤ e−α1t ∥u0∥2L2(T2) +

∫ t

0

e−α1(t−s) ∥f (s)∥2H−1(T2) ds (2.15)

where α1 > 0 is first positive eigenvalue of the Laplacian. Note for T2 = R2/2πZ2, we have α1 = 1.

Proof. By (2.12), we have u solving

u̇+ Lu+B (u) = f

dot with u taking L2 inner-product, denoted ⟨·, u (t)⟩, we have

1

2

d

dt
∥u (t)∥2L2(T2) + ∥∇u (t)∥2L2(T2) = ⟨f (t) , u (t)⟩ ≤ 1

2
∥f (t)∥2H−1 +

1

2
∥u (t)∥2H1

Hence absorbing ∥u (t)∥H1 into ∥∇u∥L2 , we have

d

dt
∥u (t)∥2L2 + ∥∇u (t)∥2L2 ≤ ∥f (t)∥2H−1

Now notice, writing u =
∑∞

j=1⟨u, ej⟩ej where −∆ej = αjej eigenvalues and eigenvectors, we have

−∆u =
∞∑
j=1

αj⟨u, ej⟩ej =⇒ ∥∇u∥2L2 = ⟨−∆u, u⟩ =
∞∑
j=1

αj⟨u, ej⟩2 ≥ α1 ∥u∥2L2

This is Poincaré’s Inequality. So applying such estimate,

d

dt
∥u (t)∥2L2 + α1 ∥u (t)∥2L2 ≤ ∥f (t)∥2H−1

We multiply by eα1t on both sides to see

d

dt

(
eα1t ∥u (t)∥2L2

)
= eα1t

d

dt
∥u (t)∥2L2 + α1 ∥u (t)∥2L2 e

α1t ≤ eα1t ∥f (t)∥2H−1
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Integrating on both sides from 0 to t gives

eα1t ∥u (t)∥2L2−∥u (0)∥2L2 ≤
∫ t

0

eα1s ∥f (s)∥2H−1 ds ⇐⇒ ∥u (t)∥2L2 ≤ e−α1t ∥u (0)∥2L2+

∫ t

0

e−α1(t−s) ∥f (s)∥2H−1 ds

Take u (t) = St (u0) to conclude.

We also cite without proof the continuity property of St. In particular, we need the fact that St is

continuous from H to V . Denote St(u0, f) to indicate dependence on force f , we have the following

Proposition 2.4 (Continuity Property of NS Process). ∃ C > 0 s.t. ∀ 0 < t ≤ 1, any u01 , u02 ∈ H and

any f1, f2 ∈ L2
loc(R+, H), we have

∥St(u01 , f1)− St(u02 , f2)∥
2
1 ≤ C

∫ t

0

∥f1 − f2∥2L2 ds+ A(t)t−3

(
∥u01 − u02∥

2
L2 +

∫ t

0

∥f1 − f2∥2H−1 ds

)

for A(t) = exp
(
C
∫ t

0

(
∥Ss(u01 , f1)∥

2
1 + ∥Ss(u02 , f2)∥

2
1 + ∥f1∥2L2 + ∥f2∥2L2

)
ds
)
. ∥·∥k denotes norm in V k.

2.2 Random Kick Force

We consider NS equations in which force has form f (t, x) = h (x) + η (t, x), where h is deterministic but

η is stochastic process. So the 2D stochastic Navier-Stokes has form

u̇+ ⟨u,∇⟩u− ν∆u+∇p = h (x) + η (t, x) (2.16)

div u = 0 (2.17)

In this section, we consider η random kick force on T2, defined as

η (t, x) =
∞∑
k=1

ηk (x) δ (t− kT ) (2.18)

T > 0 constant and {ηk} i.i.d. random variables in H, defined on probability space (Ω,F ,P). As in the

deterministic case, we project using Π to space H and obtain

u̇+ νLu+B (u) = h+
∞∑
k=1

ηkδ (t− kT ) (t, x) ∈ R+ × T2 (2.19)
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where as in (2.9)

Lu := −Π∆u and B (u) = B (u, u) := Π (⟨u,∇⟩u)

2.2.1 Solution

We start by defining a ‘solution’ to (2.19). First consider the NS process to the deterministic equation.

Let St : H → H be resolving operator for (2.10) with f (t, x) = h

u̇+ νLu+B (u) = h (2.20)

i.e., St (u0) = u (t) ∈ C (R+, H) ∩ L2
loc (R+, V ) is solution to (2.20) satisfying u (0) = u0. Note that

randomness is introduced per interval Jk := [(k − 1)T, kT ), hence it’s natural to define a filtration for

(2.19) as non-decreasing family of σ-algebras {Gt | t ≥ 0} of space (Ω,F) s.t. satisfies

Gt = G(k−1)T ∀ t ∈ Jk = [(k − 1)T, kT )

and that

ηk is GkT −measurable and independent of G(k−1)T ∀ k ∈ N+

Recall that a random variable v (t) is adapted to Gt for t ≥ 0 if v (t) is Gt-measurable ∀ t ≥ 0. We then

introduce the solution space analog of Definition 2.7 on each interval Jk as

H (Jk) :=
{
u ∈ L2 (Jk, V ) | u̇ ∈ L2 (Jk, V

∗)
}

(2.21)

In view of continuous embedding of H, we know H (Jk) ↪→ C (Jk, H). Hence any u ∈ H (Jk) admits an

extension to a continuous curve from Jk → H.

Definition 2.10 (Solution with random kick force). A random process u (t), t ≥ 0, is a solution of (2.19)

if it is adapted to filtration Gt for (2.19), and a.e. trajectory of u satisfies the following ∀ k ∈ N+.

• u|Jk ∈ H (Jk) and satisfies (2.20). In particular, u : Jk → H is continuous curve which has limit

at the right endpoint of Jk.

• Let point tk := k T , and u
(
t−k
)
, u
(
t+k
)
be left and right hand limits of u at the point tk. We have
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relation

u
(
t+k
)
− u

(
t−k
)
= ηk (2.22)

On intervals (tk−1, tk), the function u is solution to free Navier-Stokes, where at point tk it sees

instantaneous increment of size ηk, the kth kick. Now we try to interpret u in the language of Markov

Process. Denoting uk = u(kT ) for k = 0, 1, · · · , we write

uk = ST (uk−1) + ηk, k ≥ 1 (2.23)

and for t = kT + τ with 0 ≤ τ < T , we have u(t) = Sτ (uk). We cite without proof the Existence and

Uniqueness theorem of Solution to (2.19), as direct consequence of Theorem 2.3.

Theorem 2.4 (Existence and Uniqueness [3]). Let u0 ∈ H be G0-measurable random variable. Then

(2.19) has solution satisfying initial condition (2.8) ∀ ω ∈ Ω. The solution is unique in the sense that if

ũ is another random process as solution, then

P{u(t) = ũ(t) ∀ t ≥ 0} = 1

We recall example 1.1. Compare (2.23) to (1.11), we see the collection (uk,P) itself defines a Markov

Chain in the exact same setting. Now taking randomness of initial data u0 into consideration, we

mimic the extension in example 1.1 and abuse of notation to define (uk,Pv) on the extended space

(H×Ω,B(H)⊗F). Recall the definition of stationary measure 1.6, a measure µ is stationary for Markov

Process (uk,Pv) if ∀ k, B∗
kµ = µ. With the Markov Process as defined by (2.23), we call such µ a

stationary measure for equation (2.23), hence for (2.19). One goal of this Thesis is to show such µ for

(2.19) exists. We naturally introduce the notion of stationary solution. A solution u to our equation

(2.19) is stationary if the law of its associated trajectory {uk, k ≥ 0} coincides with some stationary

measure µ, i.e., uk∗(P) = µ for any k ≥ 0 .

2.2.2 Moment Estimate

We establish moment estimates for solutions to (2.19). WLOG, let ν = 1.

Proposition 2.5 (Moment Estimate). Let u0 ∈ H be G0-measurable random variable (so Theorem 2.4
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holds). Also assume that for any m ≥ 1

E ∥u0∥mL2 < ∞ Km := E ∥η1∥mL2 < ∞ (2.24)

then there are positive constants Cm = Cm(T ) and q < 1 s.t.

E ∥u(kT )∥mL2 ≤ qkT E ∥u0∥mL2 + Cm(Km + 1) k ≥ 1 (2.25)

Proof. Recall uk = u(kT ) where uk satisfies (2.23). Notice by dissipative property of Navier-Stokes

Process (2.15)

∥ST (v)∥L2 ≤ e−α1T/2 ∥v∥L2 + C1 ∥h∥L2 ∀ v ∈ H

So taking v = uk−1

∥uk∥L2 ≤ ∥ST (uk−1)∥L2 + ∥ηk∥L2

≤ e−
α1
2
T ∥uk−1∥L2 + C1 ∥h∥L2 + ∥ηk∥L2

Hence taking mth power and letting q < 1 denote the power of negative exponential depending on first

eigenvalue α1 and C2 > 0 only on m, we have

∥uk∥mL2 ≤ qT ∥uk−1∥mL2 + C2(∥ηk∥mL2 + ∥h∥mL2)

Iteratively apply to uk−1, · · · , u1 gives

∥uk∥mL2 ≤ qkT ∥u0∥mL2 + C2

k∑
ℓ=1

q(k−ℓ)T (∥ηℓ∥mL2 + ∥h∥mL2)

Take mean on both sides to conclude.
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2.3 White Noise

Recall (2.16) (2.17). In this section, we consider η as white noise, i.e., formal time derivative of Brownian

Motion. We call η a white-in-time noise if

η (t, x) =
∂

∂t
ζ (t, x) where ζ (t, x) =

∞∑
j=1

bjβj (t) ej (x) t ≥ 0 (2.26)

{ej} orthonormal basis in H, bj ≥ 0 constants s.t. B :=
∑∞

j=1 b
2
j < ∞ and {βj} sequence of independent

standard Brownian Motions. This ensures for almost every ω ∈ Ω, ζω(t, ·) is a continuous random process

in H. We write ζω(t, ·) ∈ C(R+;H). So our equation of interest is

u̇+ νLu+B (u) = h+
∂

∂t
ζ(t, x) (2.27)

2.3.1 Solution

We begin with defining a solution to (2.27). Let us assume Brownian motions {βj} are defined on

complete probability space (Ω,F ,P) with filtration Gt for t ≥ 0, and σ-algebras Gt are complete w.r.t.

(F ,P), i.e., Gt contains all P-nul sets A ∈ F . In such case, the filtered probability space (Ω,F ,Gt,P) is

said to satisfy the usual hypothesis.

Definition 2.11 (Solution with white noise). An H-valued random process u(t), t ≥ 0 is called a solution

to (2.27) if

• u(t) is adapted to filtration Gt, and almost every trajectory belongs to

X := C(R+;H) ∩ L2
loc(R+;V )

• (2.27) holds in the sense that, with probability 1,

u(t) +

∫ t

0

(νLu+B(u)) ds = u(0) + th+ ζ(t), t ≥ 0 (2.28)

where equality holds in space H−1. Both sides of the equation lies in C(R+;H
−1), hence well-defined.

We sketch a construction of solution u. In principle, we simplify (2.27) into a Navier-Stokes system
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with random coefficients. Let u = v + z where z solves

ż + νLz = η(t, x) t ≥ 0 (2.29)

Hence plugging into (2.27) we obtain

v̇ + νLv +B(v + z) = h (2.30)

v(0) = u0 (2.31)

as Navier-Stokes system with random coefficients entering through stochastic process z. We call (2.29)

stochastic Stokes Equation, and use the fact that z can be represented as stochastic convolution

Theorem 2.5 (Existence and Uniqueness of Stochastic Stokes solution). (2.29) has solution z(·) ∈ X

satisfying initial condition z(0) = 0. z is unique up to measure zero. z can be represented as stochastic

convolution

z(t) =

∫ t

0

e−ν(t−s)Ldζ(s) (2.32)

We sketch a proof for existence. This is essentially insightful, as it uses 2 main ingredients in moment

estimating under stochastic integrals: Itô formula and Doobs (see [2]). Integration by parts for (2.32),

we have

z(t) =

∫ t

0

e−ν(t−s)Ldζ(s) = ζ(t)− ν

∫ t

0

Le−ν(t−s)Lζ(s)ds (2.33)

Let us consider sequence of processes zn(t) defined mimicing (2.33)

zn(t) = ζn(t)− ν

∫ t

0

Le−ν(t−s)Lζn(s)ds (2.34)

with ζn(t) :=
∑n

j=1 bjβj(t)ej. It’s easy to see

zn(t) + ν

∫ t

0

Lzn(s)ds = ζn(t)

it suffices to show that a subsequence znk
converges a.s. in space XT := C(0, T ;H) ∩ L2(0, T ;V ). We do

so by showing zn defines a Cauchy sequence in L2(Ω,XT ). Indeed let zmn = zn − zm for m < n, so zmn
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satisfies

˙zmn + νLzmn =
n∑

j=m+1

bjβ̇j(t)ej(x)

We need the Itô’s formula

Theorem 2.6 (Itô [2], [3]). let H be separable Hilbert Space and F : [0, T ]×H → R be twice continuously

differentiable bounded and uniformly continuous along with its derivative. Let {ut, t ≥ 0} be continuous

in H and locally square integrable in V . Moreover, ut is Itô process in V ∗ with constant diffusion, i.e.

ut = u0 +

∫ t

0

fsds+
∞∑
j=1

βj(t)gj t ≥ 0 (2.35)

for {gj} ⊂ H s.t.
∑∞

j=1 ∥gj∥
2
H < ∞ and ft Gt-progressively measurable V ∗-valued process such that

P{
∫ T

0

∥ft∥2V ∗ ds < ∞} = 1 (2.36)

If F further satisfies 2 conditions [3]

• for any T > 0, (∂uF )(t, u) defined initially on H admits a continuous extension to V ∗ for any

u ∈ V

• For any sequence {wk} ⊂ V converging to w ∈ V in topology of V and any t ∈ R+, v ∈ V ∗, we

have

(∂u)F (t, wk; v) → (∂uF )(t, w; v) ask → ∞

Then

F (t, ut) = F (0, u0) +

∫ t

0

A(s)ds+
∞∑
j=1

∫ t

0

Bj(s)dβj(s) t ∈ [0, T ] (2.37)

where

A(t) = (∂tF )(t, ut) + (∂uF )(t, ut; ft) +
1

2

∞∑
j=1

(∂2
uF )(t, ut; gj) (2.38)

B(t) = (∂uF )(t, ut; gj) (2.39)

and (∂uF )(u; v) and (∂2
uF )(u; v) denote the first and second derivatives of F w.r.t. to u at point v ∈ H.
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Now Apply (2.37), (2.38), (2.39) to F (t, zmn(t)) = ∥zmn(t)∥2L2 , we derive

∥zmn(t)∥2L2 =

∫ t

0

(−2ν ∥∇zmn(s)∥2L2 + Fmn)ds+ 2
n∑

j=m+1

bj

t∑
0

⟨zmn, ej⟩dβj (2.40)

where Fmn =
∑n

j=m+1 b
2
j . Taking mean value and sup to (2.40), we have

sup
0≤t≤T

E ∥zmn(t)∥2L2 + 2ν E
∫ T

0

∥zmn(s)∥21 dt ≤ C4TFmn (2.41)

On the other hand, we apply Doob’s moment inequality.

Theorem 2.7 (Doob’s Moment Inequality [3]). let {Mt, t ≥ 0} be non-negative submartingale, then for

any p ∈ (1,∞) and fixed T > 0, we have

E( sup
0≤t≤T

Mp
t ) ≤

(
p

p− 1

)p

EMp
T (2.42)

Apply (2.42) to (2.40) results in

E( sup
0≤t≤T

∥zmn(t)∥2L2) ≤ FmnT + C5 E
∫ T

0

n∑
j=1

b2j

∫
T2

z2mn(t)e
2
jdxdt (2.43)

Note Fmn → 0 as m,n → ∞, so combining (2.41) and (2.43) we coclude

E( sup
0≤t≤T

∥zmn(t)∥2L2) + E
∫ T

0

∥zmn(s)∥21 dt → 0 as m, n → ∞

This concludes sketch of Theorem 2.5. Now we cite main theorem on existence and uniqueness of solution

to (2.27)

Theorem 2.8 (Existence and Uniqueness[3]). For any ν > 0 and any G0-measurable random variable

u0(x), (2.27) has solution u(t), t ≥ 0 satisfying initial condition

u(0) = u0 almost surely (2.44)

If ũ(t) is another solution to (2.27) and (2.44) then they agree almost surely. Furthermore, u(t) has

following properties
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• Almost all trajectories u(t) are continuous in range H and locally square integrable in range V .

• The process u(t) can be written in form

u(t) = u0 +

∫ t

0

f(s)ds+ ζ(t) t ≥ 0

where f(t) is V ∗-valued Gt-progressively measurable process such that

P{
∫ T

0

∥ft∥2V ∗ ds < ∞} = 1

Notice they match assumptions on Infinite dimensional Itô formulas Theorem 2.6 in order to construct

the solution.

To understand the solution under a Markovian perspective, let Ω̃ = H × Ω where (Ω,F ,Gt,P) is

complete filtered probability space as defined. Also let

F̃t = B(H)⊗ Gt, Pv = δv ⊗ P

where v ∈ H. Writing ω̃ = (v, w) ∈ Ω̃ and we define t 7→ ut(w̃) ≡ uω(t; v), where uω(t; v) denotes solution

of (2.27) as in Theorem 2.8 for u0 = v a deterministic initial data. So adding randomness to u0, we define

a family of Markov Process (ut,Pv), v ∈ H, associated with (2.27). Notice to justify the Markov process

for {ut}, one needs to rewrite the law of uω(t) in terms of measures of randomness for ζ and initial data

u0. To do so, fix T > 0, let CT = C(0, T ;H), mζ,T = ζ|[0,T ]∗(P) and Fζ,T as mζ,T -completion of B(CT ).

We have proposition that follows from construction of solution to (2.27)

Proposition 2.6 ([3]). There exists measurable mapping

U : (H × CT ,B(H)⊗Fζ,T ) 7→ (XT ,B(XT ))

which is locally Lipschitz continuous in u0 ∈ H and for mζ,T -almost every ω in ζω ∈ CT such that

uω = U(u0, ζ
ω) for mζ,T − almost every ω and all u0 ∈ H

The restriction of U to H × C(0, T ;V ) is locally Lipschitz continuous in both variables.
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Now denote Ut the restriction of U to time t ∈ [0, T ], for any u0 random initial data independent

of ζω, the law of uω(t), uω(t)∗(P) can be written as image of product measure u0∗(P) ⊗mζ,T under the

mapping Ut

uω(t)∗(P) ≡ P{uω(t) ∈ ·} = u0∗(P)⊗mζ,t{Ut ∈ ·} ≡ Ut∗(u0∗(P)⊗mζ,t) (2.45)

We unpack Markov Property and using (2.45) for law of uω(t) to justify (ut,Pv) defines a Markov Process.

Recall a measure µ ∈ P(H) is stationary for (2.27) if µ is invariant under B∗
t associated with (ut,Pv)

for any t ≥ 0. A solution u(t) to (2.27) is stationary if for any t ≥ 0, the law uω
t (P) coincides with some

stationary measure µ. Notice B∗
tu0∗(P) coincides with RHS of (2.45).

2.3.2 Moment Estimate

One naturally asks: Does energy balance still hold for solutions to (2.27)? We provide an analogue result

of (2.11).

Proposition 2.7 (Moment Estimate). Under same hypothesis as Theorem 2.8, assume initial data u0

has finite second moment E ∥u0∥L2 < ∞. Then for any ν > 0, the following energy balance holds for

solution u(t) of problem (2.27) (2.44)

E ∥u(t)∥2L2 + 2ν E
∫ t

0

∥∇u(s)∥2L2 ds = E ∥u0∥2L2 +Bt+ 2E
∫ t

0

⟨u, h⟩ds t ≥ 0 (2.46)

Moreover, for α1 > 0 first eigenvalue of Stokes operator L, we have

E ∥u(t)∥2L2 ≤ e−να1t E ∥u0∥2L2 + (να1)B+ (να1)
−2 ∥h∥2L2 t ≥ 0 (2.47)

Proof. We use a version of Itô’s Formula Theorem 2.6 to functional F (u) = ∥u∥2L2 , where we consider

evaluating u at t ∧ τn for τn := inf{t ≥ 0 | ∥u(t)∥L2 > n} stopping time. We calculate

∂uF (u; v) = 2⟨u, v⟩ ∂2
uF (u; v) = 2 ∥v∥2L2

and observe

∥u(t ∧ τn)∥2L2 = ∥u0∥2L2 + 2

∫ t∧τn

0

(⟨u, h− νLu⟩+B) ds+ 2
∞∑
j=1

bj

∫ t∧τn

0

⟨u, ej⟩dβj(s)
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Now taking mean value on both sides to obtain

E ∥u(t ∧ τn)∥2L2 + 2ν E
∫ t∧τn

0

∥∇u(s)∥2L2 ds = E ∥u0∥2L2 +BE(t ∧ τn) + 2E
∫ t∧τn

0

⟨u, h⟩ds

passing to the limit at n → ∞ and using monotone convergence theorem we have (2.46) Also note that

Poincaré’s Inequality gives

∥∇u∥2L2 ≥ α1 ∥u∥2L2

while Young’s Inequality gives

2|⟨u, h⟩| ≤ να1 ∥u∥2L2 +
1

να1

∥h∥2L2

substituting these into (2.46) and using Gronwall’s we have (2.7).

We now establish an estimate for second exponential moment with assumption on stronger initial

data.

Proposition 2.8 (Exponential Moment Estimate). Under hypothesis of Theorem 2.8, there is constant

c > 0 not depending on ν, h and {bj} such that if κ > 0 satisfies

κ sup
j≥1

b2j ≤ c (2.48)

Then the following holds: For any G0-measurable H-valued random variable u0(x) such that

E exp
(
κν ∥u0∥2L2

)
< ∞ (2.49)

then the corresponding solution to (2.27), (2.44) satisfies

E exp
(
κν ∥u(t)∥2L2

)
≤ e−κν2t E exp

(
κν ∥u0∥2L2

)
+K(ν,κ,B, h) (2.50)

where the constants are

K(ν,κ,B, h) = ν−1R exp(κR/α1), R = Cν−1 ∥h∥2L2 +B+ ν (2.51)

where C > 0 is absolute constant.

30



Proof. The proof mimics that of Theorem 2.7. Apply Itô’s to functional F : H → R as defined by

F (u) = exp
(
κν ∥u∥2L2

)
. We calculate

∂uF (u; v) = 2κνF (u)⟨u, v⟩ ∂2
uF (u; v) = 2κνF (u)

(
∥v∥2L2 + 2κν⟨u, v⟩2

)
Hence evaluating t ∧ τn gives

F (u(t ∧ τn)) = F (u0) +

∫ t∧τn

0

A(s)ds+M(t ∧ τn)

for M(t) stochastic integral, hence mean value zero, and

A(t) = 2κνF (u(t))

(
−ν⟨u(t), Lu(t)⟩+ ⟨u(t), h⟩+ 1

2
B+ κν

∞∑
j=1

b2j⟨u(t), ej⟩2
)

Taking Mean value on both sides gives

EF (u(t ∧ τn)) = EF (u0) + E
∫ t∧τn

0

A(s)ds (2.52)

Now we try to estimate size of A(t). Note if (2.48) holds with c ≤ (8α1)
−1 so the last term in A(t) get

absorbed. Using Young’s, and rewriting equivalent norm for V , i.e. ∥u∥2V = ⟨u, Lu⟩ we have

A(t) ≤ κνF (u(t))
(
−ν ∥u∥2V + C1ν

−1 ∥h∥2L2 +B
)

≤ −κν2F (u(t)) + κν2K(ν,κ,B, h)

substituting into (2.52) and using Fatou to pass to limit as n → ∞, we obtain

E exp
(
κν ∥u(t)∥2L2

)
+ κν2

∫ t

0

E exp
(
κν ∥u(s)∥2L2

)
≤ κν2K(ν,κ,B, h)

conclude by Gronwall’s.
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3 Existence of Stationary Measure for (2.19) and (2.27)

Now, with Bogolyubov-Krylov argument Theorem 1.3, and its corollary 1.1 at hand, and with 2D NS

equations with random kick force (2.19), and with white noise (2.27) as the equations of which we consider

the stationary measure, we prove their Existence in the section. Recall we’ve already made sense of the

Solutions in a Markovian Perspective, and defined the notion of stationary measure in each setting.

3.1 Random Kick Force

Theorem 3.1 (Existence of Stationary Measure for (2.19)). Let h ∈ H be deterministic function in H

and {ηk} be sequence of i.i.d random variables in H with finite second moment E ∥η1∥L2 < ∞. Then

(2.19) has at least one stationary measure. Moreover, every stationary measure µ ∈ P(H) satisfies

∫
H

∥u∥L2 µ(du) < ∞ (3.1)

Proof. First, we show existence of stationary measure using Corollary 1.1, showing it holds for initial

data v = 0. Recall (2.23) uk = ST (uk−1) + ηk, so it suffices to construct for any ϵ > 0 two compact sets

K1, K2 ⊂ H such that

P{ST (uk−1) /∈ K1} ≤ ϵ, P{ηk /∈ K2} ≤ ϵ

where uk = u(kT ) for u solution as defined in Theorem 2.4 with u0 = 0. If so, take K = K1 +K2, we

see P{uk /∈ K} ≤ 2ϵ for any k ≥ 1. Notice H is Polish space, so by Ulam’s Theorem 1.1, for single

random variable ηk, existence of K2 is given for free. To construct K1, recall (2.25), since initial data is

u0 = v = 0, we have

E ∥uk∥L2 ≤ C for all k ≥ 0

In other words, for given ϵ > 0, there exists Rϵ such that, by Chebyshev’s inequality

P{|uk−1| > Rϵ} ≤ R−1
ϵ E ∥uk−1∥L2 ≤ ϵ ∀ k ≥ 1

Then recall continuity property of ST 2.4, ST is continuous from H to V , hence for closed ball BH(Rϵ)
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in H of radius Rϵ, we have compactness of ball K1 := ST (BH(Rϵ)) via continuity, and that

P{ST (uk−1) /∈ K1} ≤ ϵ

Now we prove (3.1). Take any stationary measure µ ∈ P(H) to (2.19), we have B∗
kµ = µ for any k ≥ 0.

Under duality perspective (1.8), we have for any f ∈ L∞(H), (Bkf, µ) = (f, µ) for any k ≥ 0. Now fix a

constant R > 0 and take function fR : H → R defined by

fR(u) :=

∥u∥L2 ∥u∥L2 ≤ R

R ∥u∥L2 > R

Then for any k ≥ 0, we have for Pk transition function associated with (uk,Pv)

∫
H

fR(u)µ(du) =

∫
H

∫
H

Pk(u, dv)fR(v)µ(du) (3.2)

We estimate RHS of (3.2). For ∥u∥L2 ≤ ρ, by (2.25) with m = 1, we have for fixed u ∈ H

∫
H

Pk(u, dv)fR(v) ≤ E ∥uk∥L2 ≤ qkρ+ C (3.3)

where uk is trajectory of (2.23) with u0 = u, and C > 0, q < 1 constants independent of u, k, R.

Substituting (3.3) into (3.2) and using fR ≤ R for any R > 0 for ∥u∥L2 > ρ, where ρ > 0, we have

∫
H

fR(u)µ(du) ≤ Rµ(H \BH(ρ)) + qkρ+ C

pass k → ∞, then ρ → ∞, we have ∫
H

fR(u)µ(du) ≤ C

Now apply Fatou’s Lemma and push R → ∞ to conclude.

In fact, (3.1) easily generalizes to, for any stationary measure µ ∈ P(H) to (2.19)

∫
H

∥u∥ms µ(du) < ∞ ∀ m ≥ 1
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and ∫
H

exp(κs ∥u∥pss )µ(du) < ∞

under suitable modifications of hypothesis for u0 and η1.

3.2 White Noise

Theorem 3.2 (Existence of Stationary Measure for (2.27)). Under hypothesis of Theorem 2.8, the

stochastic Navier-Stokes system (2.27) with arbitrary ν > 0 has a stationary measure. Moreover, any

stationary measure µν ∈ P(H) satisfies relations

∫
H

(
ν ∥u∥21 + exp

(
κν ∥u∥2L2

))
µν(du) ≤ C

(
B+ ν−1 ∥h∥2L2

)
(3.4)

ν

∫
H

∥u∥21 µν(du) =
B

2
+

∫
H

⟨u, h⟩µν(du) (3.5)

where positive constants κ, C do not depend on ν. (Recall ∥·∥1 denotes norm in V = H1 ∩H).

Proof. First, we show existence of stationary measure to (2.27) via Bogolyubov-Krylov 1.3. Denote

u(t, x) the solution to (2.27) with initial data u0 = 0, and λt the law of u(t) regarded as random variable

in H. Thus by (2.45), λt = B∗
t δ0 for t ≥ 0. The existence of stationary measure will be established if the

family {λt, t ≥ 0} is tight, which is defined as (1.14) with X = H.

λt(Γ) :=
1

t

∫ t

0

(B∗
sδ0)(Γ)ds =

1

t

∫ t

0

∫
H

Ps(u,Γ)δ0(du)ds Γ ∈ B(H)

Since for d = 2, H1 compactly embeds into L2, the embedding V ⊂ H is compact. We take BV (R) closed

ball of radius R in V as compact subset of H, hence by definition of tightness, it suffices to prove

sup
t≥0

λt (H \BV (R)) → 0 as R → ∞ (3.6)

The tool we use is (2.46) with u0 = 0 and Young’s Inequality

|⟨u, h⟩| ≤ C(∥u∥2L2 + ν−1 ∥h∥2L2)
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we have

E
∫ t

0

∥∇u(s)∥2L2 ds ≤ t(B+ ν−1 ∥h∥2L2) t ≥ 0

Combining this with Chebyshev

λt(H \BV (R)) =
1

t

∫ t

0

λs(H \BV (R))ds =
1

t

∫ t

0

P{∥u(s)∥1 > R}ds

≤ 1

tR2
E
∫ t

0

∥∇u(s)∥2L2 ds ≤
1

R2

(
B+ ν−1 ∥h∥2L2

)
conclude by pushing R → ∞. Now we show that any stationary measure µν satisfies (3.4) and (3.5). Re-

call we’ve shown second exponential moment estimate (2.50). By arguing similarly as in the argument to

(3.1), one proves second exponential part to (3.4). Now let u0 be H-valued random variable independent

of ζ whose law coincide with µν , our stationary measure, and let u(t) be solution to (2.27), (2.44). Then

u(t) is stationary solution, i.e., E ∥u(t)∥2L2 = E ∥u0∥2L2 . Hence (2.46) gives

2νtE ∥u∥21 = Bt+ 2tE⟨u, h⟩

dividing by 2t gives (3.5). Now combine (3.5) with Schwartz to deal with E⟨u, h⟩ and use Friedrich’s

Inequality to bound L2-norm of u introduced by Schwartz, then absorb it to the LHS, we arrive at ∥u∥21

term estimate in (3.4).

To this end, we’ve shown the existence of stationary measures to (2.19) and (2.27), and proved basic

moment estimates integrating against the stationary measures.
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4 Conclusion and Discussions

We’ve introduced basic Polish space theory, definition of Markov Processes taking value in Polish

space, hence Bogolyubov-Krylov as main tools to show existence of stationary measure. On the other

hand, we introduced deterministic 2D NS equation on torus, and with random kick forces, or white noise.

We made sense of their solutions, in particular, the Markovian perspectives for the stochastic case, and

cited the existence and uniqueness of solution theorems. We derived some basics moment estimates for

the 2 stochastic cases, mainly focusing on second moment and second exponential moment. Finally we

showed existence of stationary measure to both stochastic NS equations using Bogolyubov-Krylov and

its corollary, and proved basic moment estimates integrating against the stationary measure.

Our presentation omits details in some steps, yet hope to keep the overall construction and logic flow

clear. The major proofs follow from the book [3], very nice material as adviced by Prof. Nersesyan. The

author’s understanding for the materials are built upon materials cited in the reference section.

Of course, there are large amount of materials skipped during the construction, and the author wish to

address their importance in his future studies. Topics include Random Dynamics Systems and Ergodic

Theory associated with stochastic Navier-Stokes, Uniqueness and Mixing of the Stationary Measures,

and the Inviscid limit.
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